
FAEST: Algorithm Specifications

Version 1.1

Carsten Baum1,2, Lennart Braun1, Cyprien Delpech de Saint Guilhem3, Michael
Klooß4, Christian Majenz2, Shibam Mukherjee5, Emmanuela Orsini7, Sebastian

Ramacher6, Christian Rechberger5, Lawrence Roy1, and Peter Scholl1

1 Aarhus University
2 Technical University of Denmark

3 imec-COSIC, KU Leuven
4 Aalto University

5 TU Graz
6 AIT Austrian Institute of Technology

7 Bocconi University

July 4, 2023

Table of Contents

1 Introduction . 3
2 Overview of Algorithms and Main Parameters . 4

2.1 Main Parameters . 4
2.2 Overview of VOLE-in-the-Head and VOLE Commitments 8
2.3 QuickSilver: a VOLE-based Zero-Knowledge Proof System 11

3 Preliminaries . 14
3.1 Notation . 14
3.2 Data Types and Conversions . 14
3.3 Cryptographic Primitives . 16
3.4 Security Definitions . 17

4 Additional Building Blocks . 17
4.1 AES and Rijndael . 18
4.2 Universal Hashing . 23

5 VOLE-in-the-Head Functions . 26
5.1 All-but-One Vector Commitments . 26
5.2 Seed Expansion and Conversion to VOLE . 28
5.3 VOLEitH: Commitment and Reconstruction . 29

6 AES Functions . 32
6.1 Witness Extension . 32
6.2 Deriving Constraints for the Key Expansion Routine 33
6.3 Deriving Constraints for the Encryption Routine 38
6.4 Proving and Verifying AES Constraints . 42

7 Rijndael-EM Functions . 46
7.1 Witness Extension . 46
7.2 Deriving Constraints for the Encryption Routine 46
7.3 Proving and Verifying Rijndael-EM Constraints . 51

8 The FAEST Signature Scheme. 54
8.1 Key Generation . 54
8.2 Signing . 54
8.3 Verification . 56

9 Performance Analysis . 58
10 Security Evaluation . 60

10.1 Provable Security . 60
10.2 Concrete Attacks . 79
10.3 Concrete Analysis of AES as a OWF . 81

11 Advantages and Limitations . 88
11.1 Advantages . 88
11.2 Limitations . 89

A Finite Field Generator Elements . 93

1 Introduction

This document describes and specifies the FAEST digital signature algorithm. It
presents the underlying cryptographic components and specifies the building blocks
used to construct the FAEST algorithm.

The design of FAEST is intended to provide security against attacks by quan-
tum computers by relying only on information-theoretic and symmetric-key cryp-
tographic primitives. In particular, in addition to standard PRFs and PRGs for
randomness derivation, the security of FAEST is tightly linked to the security of
AES128, AES192 and AES256, based on which the NIST security categories 1, 3,
and 5 are defined.

Overview. A key pair (pk, sk) for the FAEST signature algorithm is defined as
pk = (x, y) and sk = k such that Ek(x) = y, where E is a block cipher, k is a
secret key and x is a plaintext block for E. The signature is derived from a non-
interactive argument of knowledge of sk, similarly to other post-quantum signature
algorithms such as Picnic [CDG+17, ZCD+20] or Banquet [BDK+21]. However,
the argument system used in FAEST is not constructed in the MPC-in-the-Head
(MPCitH) framework [IKOS07], but using a new tool called VOLE-in-the-Head
(VOLEitH)8 [BBD+23] which enables the use of efficient VOLE-based proof sys-
tems.

There is some similarity between the VOLEitH technique and MPCitH con-
structions such as Picnic, for instance, both can be seen as initially creating an
N -out-of-N secret sharing of the witness for the zero-knowledge proof. However,
the zero-knowledge proof phase of a VOLEitH construction like FAEST is very dif-
ferent, and not based on MPC (multi-party computation). Instead, VOLEitH is
closer to secure two-party computation, since VOLE is a two-party primitive, and
also relies on techniques from other two-party protocols such as oblivious transfer
extension [IKNP03, Roy22].

To construct the FAEST signature algorithm, the interactive argument system
resulting from combining VOLEitH with the QuickSilver information-theoretic proof
system [YSWW21] is made non-interactive by the Fiat–Shamir transform [FS87] and
proven secure in the random oracle model (ROM). (Evidence of FAEST’s security in
the quantum-accessible ROM (QROM) is also provided.)

Design choices. In addition to the VOLEitH construction, the main design choices
made for the FAEST algorithm were: using QuickSilver as the information-theoretic
proof system, and instantiating E with the standardized primitive of AES [AES01].
This document also specifies alternative variants for security categories 1, 3 and 5,
called FAEST-EM, based on the Even-Mansour construction, which improve perfor-
mance through a less standard use of either AES or its precursor Rijndael.

Hardness assumptions. Other than the block cipher E, the security of FAEST re-
lies on the security of the VOLEitH construction and of the QuickSilver protocol.
Since the first is constructed only from symmetric-key primitives (PRGs and hash
functions), and the second is information-theoretically secure, the EUF-CMA secu-
rity of FAEST does not require any number theoretic or other structured hardness
assumptions.

8VOLE stands for vector oblivious linear evaluation.

Top of Section 1 3 Table of Contents

Outline of this document. Section 2 provides a detailed overview of the VOLEitH
tool and of the QuickSilver proof system; it also lists the specified parameter sets for
the FAEST signature algorithm. Section 3 presents preliminaries for this document:
the notation, the data types and their conversions, the elementary cryptographic
primitives and the security definitions. Section 4 describes two additional compo-
nents: the AES and Rijndael algorithms and universal hashing algorithms.

After these introductory sections, the document specifies the FAEST signature
algorithm. Section 5 specifies the VOLEitH construction. Section 6 specifies the
computation of the QuickSilver proof of the AES circuit in FAEST. Section 7 spec-
ifies the computation of the QuickSilver proof for the Even-Mansour variant of the
one-way function. Section 8 specifies the key generation, signature and verification
algorithms for FAEST.

The final part of this document analyses the FAEST signature algorithm. Sec-
tion 9 provides the performance results of the implementations. Section 10 provides
both a formal proof as well as an analysis of the concrete attacks that are relevant
to the building blocks of FAEST. Section 11 discusses the advantages and limitations
provided by the algorithm.

2 Overview of Algorithms and Main Parameters

This section presents the main algorithms used for the FAEST signature scheme to
provide context for the parameter sets that we define.

2.1 Main Parameters

We let λ denote the computational security parameter. In this section, we describe
parameter sets for FAEST-λ and FAEST-EM-λ for λ ∈ {128, 192, 256} (categories
{1, 3, 5}). To explain the meaning of the main parameters, we first give some back-
ground on the VOLEitH paradigm.

2.1.1 VOLE and VOLE-in-the-Head. FAEST uses VOLE correlations over
a finite field F2k , to use as a form of linearly homomorphic commitment scheme.
A VOLE (vector oblivious linear evaluation) correlation of length ` is defined by
a random global key ∆ ∈ F2k , a set of random bits ui ∈ F2, random VOLE tags
vi ∈ F2k and VOLE keys qi ∈ F2k such that:9

qi = ui ·∆+ vi for i = 0, . . . , `− 1. (1)

The values ui and vi should be known only to the prover (in FAEST, the signer),
while qi and ∆ should be given to the verifier.

A VOLE correlation can be seen as committing the prover to the random bits ui
via a linearly homomorphic commitment scheme. The scheme is hiding, because
the random vi mask ui in the verifier’s values qi, and the scheme is binding, because
opening to a different value u′i requires the prover to come up with a tag v′i = qi−u′i∆,
but then the prover would have successfully guessed ∆ = (vi − v′i)/(u′i − ui), which
can only happen with probability 2−k. The linearity of Equation (1) implies that the
commitments are linearly homomorphic, a particularly useful property for building
efficient zero-knowledge proofs [WYKW21, YSWW21, BMRS21].

9This is technically a subfield VOLE, since the ui’s are restricted to be in F2, a subfield of F2k .

Top of Section 2 4 Table of Contents

A VOLE correlation can be created with a secure two-party protocol [BCGI18,
BCG+19, WYKW21, Roy22]; in FAEST, however, since we want to obtain zero-
knowledge proofs and signatures that are publicly verifiable, we instead use the
VOLEitH technique [BBD+23]. Here, the prover first generates its values ui, vi and
commits to them using a special type of VOLE commitment. The commitment is
set up such that the verifier can later send to the prover the random key ∆, after
which, the prover can send an opening that allows the verifier to learn its qi values,
such that Equation (1) holds for ∆, and nothing more.

Note. It is important that ∆ is only given to the signer after running the main steps
of the zero-knowledge proof, since as soon as ∆ is known, the binding property of
the homomorphic commitments is trivially broken.

2.1.2 Parameters for VOLEitH. To realise a single instance of VOLE which
produces random values in the small field F2 and VOLE tags and keys in a larger field
F2k using our VOLEitH construction requires the signer to perform O(2k) work. To
achieve security in the zero-knowledge protocol, we require VOLE correlations with
tags and keys in F2λ which is infeasible to realise with a single instance parameterised
with k = λ.

Instead, we run several parallel instances of the VOLEitH protocol over smaller
fields and concatenate the VOLE tags and keys that they produce. This creates
VOLE correlations over the exponentially large field F2λ with only a polynomial
amount of work. Namely, for each parameter set we select a repetition parameter
τ ∈ N and derive two length parameters k0, k1 ∈ N such that

k0 := dλ/τe and k1 := bλ/τc .

These will set the field sizes of our small VOLE instances. We also derive two repe-
tition parameters τ0 := (λ mod τ) and τ1 := τ − τ0, such that

k0 · τ0 + k1 · τ1 = λ,

ensuring that concatenating the outputs of τ0 instances of VOLEitH for F2k0 and τ1

instances for F2k1 produces VOLE correlations in F2λ exactly.
Selecting only a single k would have implied either choosing a value of k that

divides λ and limiting a feasible k to {2, 4, 8, 16}, or choosing a more suitable value
of k (around 11 or 12) but producing VOLE correlations over fields with bigger
bit-length than λ, therefore leading to wasted work.

Letting τ be an arbitrary integer, as long as the resulting k0 and k1 still imply
feasible runtimes for the signer, offers tradeoffs between signature size and speed. A
small τ means computing fewer VOLEitH protocols and hence a smaller signature
size (because signature size scales in the number of VOLE instances), but at the
cost of larger values for k0 and k1 and hence more work for the signer and verifier.
On the other hand, increasing τ implies both larger signature sizes as well as less
work for the signer and verifier.

2.1.3 Parameters for the Signature Scheme. The key generation algorithm
of FAEST uses a one-way function F based on a block-cipher E, where F (x, k) =
(x,Ek(x)), where Ek(x) denotes the encryption of a plaintext block x under key k.
The signer proves knowledge of a preimage under this one-way function. Clearly, the
security of the resulting OWF is based directly on the security of the block cipher

Top of Section 2 5 Table of Contents

Scheme OWF Ek(x) ` τ k0 k1 B sizes (bytes)

pk sig.

FAEST-128s
AES128k(x)

1600 11 12 11 16 32 5 006

FAEST-128f 1600 16 8 8 16 32 6 336

FAEST-192s
AES192k(x0)‖AES192k(x1)

3264 16 12 12 16 64 12 744

FAEST-192f 3264 24 8 8 16 64 16 792

FAEST-256s
AES256k(x0)‖AES256k(x1)

4000 22 12 11 16 64 22 100

FAEST-256f 4000 32 8 8 16 64 28 400

FAEST-EM-128s
AES128x(k)⊕ k 1280 11 12 11 16 32 4 566

FAEST-EM-128f 1280 16 8 8 16 32 5 696

FAEST-EM-192s
Rijndael192x(k)⊕ k 2304 16 12 12 16 48 10 824

FAEST-EM-192f 2304 24 8 8 16 48 13 912

FAEST-EM-256s
Rijndael256x(k)⊕ k 3584 22 12 11 16 64 20 956

FAEST-EM-256f 3584 32 8 8 16 64 26 736

Table 2.1: One-way functions and parameters for the FAEST-λ and FAEST-EM-λ variants. ` is the
number of VOLE correlations required for the ZK proof; τ is the number of repetitions; k0, k1 are
the bit lengths of the small VOLEs; B is a padding parameter affecting security of the VOLE check

E against key recovery attacks with a single known plaintext/ciphertext pair. We
refer to Section 10 for a more detailed security analysis.

We distinguish between the parameters for the FAEST signature scheme and
the parameters for the used one-way function. In Table 2.1, we give parameters
for FAEST for 3 security levels L1, L3, L5, corresponding to the security of AES-
128, AES-192 and AES-256, respectively. For each security level, we give one set of
parameters ending with ‘s’—achieving short signatures—and another ending with
‘f’—for the speed-optimized variant. Note that Table 2.1 is divided in two parts
according to the instantiation of the OWF used in the signature scheme.

We provide two instantiations of the OWF, the first—more standard one—with
AES, that is Ek(x) = AESk(x). This corresponds to the first part of the table. Due
to the 128-bit block size of AES, we need to use β = 2 blocks of AES-192 and AES-
256 encryptions to ensure security of the corresponding OWF of 192 and 256 bits,
while for AES-128, β = 1 suffices. The second part of the table uses the single-key
Even–Mansour (EM) construction, based on fixed-key AES. The EM variant instead
defines Ek based on a public cryptographic permutation π by adding (i.e., bitwise
XORing) a key k both to the input of the cipher (0 in this case) and to the output
of the permutation. That is,

Ek(x) = k + π(k),

where π is instantiated with AES as π(z) = AESx(z), so the AES key itself is public.
This allows us to avoid calculating the non-linear key schedule with a secret key in
the zero-knowledge proof. For security levels 3 and 5, there is no direct way to use
AES as π directly for the EM variant, so we instead use the Rijndael cipher [DR98]
(of which AES is a special case) as it offers a flexible block size that we set to be
equal to the key length.

Top of Section 2 6 Table of Contents

AES OWF Parameters. Table 2.2 describes parameters for the sets using AES di-
rectly to construct the OWF (i.e. not the EM variant). It includes for example the
number of rounds and S-Boxes in the encryption routine, R and Senc, and the num-
ber of S-boxes in the key expansion routine, Ske, as well as an integer β ∈ {1, 2}
used to indicate the number of AES blocks according to the security level.

Param. Formula Description FAEST

λ 128 192 256

Nk
λ
32

no. 32-bit words in an AES key 4 6 8

R Nk + 6 no. AES encryption rounds 10 12 14

Ske −λ
8

+ 56 + 28
⌊
λ

256

⌋
no. S-Boxes in key expansion 40 32 52

Senc 16R no. S-Boxes in encryption 160 192 224

` `ke + β`enc length of extended witness in bits 1 600 3 264 4 000

`ke λ+ 8Ske no. witness bits for key expansion 448 448 672

`enc 8(Senc − 16) no. witness bits for encryption 1 152 1 408 1 664

β d λ
128
e no. message blocks 1 2 2

C Ske + β · Senc no. F28 mult. constraints 200 416 500

Table 2.2: AES-specific parameters for the FAEST-λs/f instances

Rijndael-EM OWF Parameters. Table 2.3 describes parameters for the sets using
the Even-Mansour variant of the OWF construction from AES128 and Rijndael. The
main difference is the number Nst of 32-bit words in the state of the block cipher,
which is fixed to Nst = 4 for the AES algorithm but can vary for the Rijndael
algorithm. This also includes the number of rounds R, the number of S-boxes in the
encryption phase Senc, and the witness length in bits `.

Param. Formula Description FAEST-EM

λ 128 192 256

Nk
λ
32

no. 32-bit words in an EM variant key 4 6 8

Nst
λ
32

no. 32-bit words in an EM variant block 4 6 8

R max(Nk, Nst) + 6 no. encryption rounds 10 12 14

Senc 4 ·Nst ·R no. S-Boxes in the EM variant OWF 160 288 448

` λ+ 8(Senc − 4Nst) length of extended witness in bits 1 280 2 304 3 584

C Senc no. F28 mult. constraints 160 288 448

Table 2.3: Rijndael-EM specific parameters for the FAEST-EM-λs/f instances

Passing parameters. For this specification document, to avoid passing the fixed
parameters explicitly to the algorithms that require them, we define the following
shorthands. For the parameters related to the VOLEitH construction, we define

param := (λ, `, τ, k0, k1, τ0, τ1, B, β).

For the parameter sets that construct the OWF directly from AES, we define

paramOWF := (Nk, R, Ske, Senc, `, `ke, `enc, β, C).

Top of Section 2 7 Table of Contents

For the parameter sets that construct the OWF using AES in EM variant, we define

paramOWF := (Nk, Nst, R, Senc, `, C).

2.2 Overview of VOLE-in-the-Head and VOLE Commitments

Recall that the goal of VOLEitH is for the signer to be committed to a pair of
random vectors u ∈ {0, 1}` and v ∈ F`

2λ
, such that later on, after learning a random

challenge ∆ ∈ F2λ , the signer can open these vectors to the vector

q = u ·∆− v ∈ F`2λ ,

where · means that each entry of u is multiplied with ∆, component-wise.

As mentioned in the previous section, we will build up to the above by creating
several smaller VOLEitH instances over finite fields F2k0 and F2k1 , and concatenating
these to build the final VOLE correlation in F2λ . To ensure the same u vector is
used across the different instances, we also add a consistency check. This approach
is based on the SoftSpokenVOLE protocol [Roy22], which was adopted to VOLEitH
in [BBD+23]. In the following, we use k to denote the bit-length of the small field
(which will be either k0 or k1) and let N = 2k.

All-but-One Vector Commitments. The main building block of our VOLEitH ap-
proach is the technique of committing to a vector of N pseudo-random seeds by
deriving them from a tree of length-doubling PRGs. This is also known as the GGM
construction, which builds a puncturable PRF from a PRG [GGM84, KPTZ13,
BW13, BGI14]. We model this as an all-but-one vector commitment scheme, where
the signer commits to N seeds by sending a single hash value, and can later open
N − 1 of them with only O(logN) communication. The idea is to build a complete
binary tree with N leaves, where, starting at the root node with a random seed r,
the two children of any node are defined by evaluating the parent seed with a length-
doubling PRG that outputs two new seeds. After expanding the tree, each leaf value
ki is put into a hash function H0, which outputs two new values sdi and comi. The
seed sdi is the i-th committed seed, which will later be expanded and converted
into the VOLE values, while comi is an auxiliary commitment for the seed. The
final commit to seeds sd0, . . . , sdN−1 is computed as h = H1(com0, . . . , comN−1), for
another hash function H1. We illustrate this for N = 8 in Figure 2.4.

To open all-but-one of the seeds, say, all except sdj , the signer takes the siblings
of all nodes on the path from the root to leaf j (excluding the root node) and
sends these to the verifier, together with the commitment comj . The verifier can
then reconstruct every sdi for i 6= j using the sibling nodes, and also has enough
information to compute the hash value h and check the original commitment. The
formal pseudocode for these procedures is given in Section 5.1, and their security is
shown in Section 10.1.1.

From Vector Commitments to VOLE. To obtain our desired VOLE commitments,
the signer starts by committing to τ all-but-one vector commitments, of which τ0

are of length N0 = 2k0 and τ1 of length N1 = 2k1 . Instead of sending a separate hash
value h for every commitment, the signer hashes all τ of these into a single hash. The
next step is to convert each vector commitment into a length-`, small-field VOLE
correlation in F2k , where k is either k0 or k1. This involves first expanding each of

Top of Section 2 8 Table of Contents

r

PRG

k1
0

PRG

k2
0

PRG

k3
0

H0

sd0 com0

k3
1

H0

sd1 com1

k2
1

PRG

k3
2

H0

sd2 com2

k3
3

H0

sd3 com3

k1
1

PRG

k2
2

PRG

k3
4

H0

sd4 com4

k3
5

H0

sd5 com5

k2
3

PRG

k3
6

H0

sd6 com6

k3
7

H0

sd7 com7

H1

hcom

Fig. 2.4: The tree-based all-but-one vector commitment scheme. The committed messages are the
seeds sdi, and the commitment is the hash hcom

Top of Section 2 9 Table of Contents

the seeds sd0, . . . , sdN−1 (committed in the vector commitment) using a PRG, to
obtain N strings r0, . . . , rN−1 ∈ {0, 1}`, and then computing, in F2k ,

u =
N−1∑
i=0

ri, v =
N−1∑
i=0

i · ri

where i is encoded as an element of F2k .
To see how this can be used to get a VOLE correlation, consider a verifier who

later learns seeds sdi for all i 6= j∗, for some index j∗ ∈ {0, . . . , N − 1} (viewed as
an F2k element). The verifier can compute

q =
N−1∑
i=0

(j∗ − i) · ri

= j∗ ·
N−1∑
i=0

ri −
N−1∑
i=0

i · ri

= j∗ · u− v

giving the desired VOLE correlation in F2k . This step is specified in Section 5.2,
which uses an optimized divide-and-conquer algorithm for computing u,v and q
with fewer XOR operations.

After doing this for each of the vector commitments, the signer has τ small,
independent VOLE correlations. Denote these as (ui,Vi) for i = 0, . . . , τ − 1, where
we now view Vi as a matrix in {0, 1}`×k, instead of a vector in F`

2k
. The verifier will

eventually learn (∆i,Qi) such that

Qi = Vi +
(
δ0 · ui · · · δk−1 · ui

)
where δ0, . . . , δk−1 is the bit decomposition of ∆.

But first, the signer must send correction values so that the VOLEs can be fixed
to use the same u value, say, u0, by sending ci = ui − u0, for i = 1 to τ − 1. This
allows the verifier to later adjust its output so that all VOLE relations hold with
respect to u0. Once this has been done, the parties can simply concatenate the τ
VOLE instances, by forming the `× λ matrices

V =
(
V0 · · ·Vτ−1

)
, Q =

(
Q0 · · ·Qτ−1

)
Viewing each row of the above as an element of F2λ , these form a VOLE relation

over F2λ , where the new ∆ value is formed from the bits of each ∆i.

VOLE Consistency Check. Finally, we need a way of ensuring that the signer does
not cheat when sending the correction values: if any ci is incorrectly generated, the
VOLE relation will be incorrect, and we will not obtain the same guarantees from the
ZK proof system. This is done using the consistency check from [Roy22], where the
verifier challenges the signer to open a random, linear universal hash function applied
to u and V. The linear hash function is represented by a compressing matrix H,
and the prover sends

ũ = Hu, Ṽ = HV.

The verifier then computes Q̃ = HQ and checks that the VOLE relation still
holds between ũ, Ṽ and Q̃. One small optimization is that, instead of having the

Top of Section 2 10 Table of Contents

signer send Ṽ directly, we send a collision-resistant hash of this. This saves some
communication as Ṽ is quite large, and it still allows verification, since the verifier
can simply compute what Ṽ should be (from Q̃, ∆ and ũ) and check that its hash
matches the collision-resistant hash sent by the signer. The details of the universal
hash family we use are given in Section 4.2.

Padding. The above description assumes u is of length ` bits, the same as the
extended witness for the OWF relation. In FAEST, we actually run the VOLE com-
mitment on length ˆ̀ = ` + 2λ + B, because the VOLE consistency check reveals a
(λ + B)-bit linear function of u to the verifier, which needs to hide the underlying
witness. After the check, we discard the additional bits and use the length ` + λ
VOLE for the ZK proof stage. In the ZK proof, the first ` bits of u are used to
commit to the extended witness, while the final λ bits will be used as a mask for a
second consistency check.

2.3 QuickSilver: a VOLE-based Zero-Knowledge Proof System

The QuickSilver protocol of Yang, Sarkar, Weng and Wang [YSWW21] is an inter-
active zero-knowledge proof of knowledge protocol in the VOLE-hybrid model. It is
based on the Line-Point Zero-Knowledge paradigm of Dittmer et al. [DIO21].

For the FAEST signature scheme, we use the QuickSilver protocol as specified for
arithmetic circuits over any finite field [YSWW21, Section 4] to prove circuits derived
from the Advanced Encryption Standard (AES) algorithm [AES01]. This section
describes the QuickSilver proof system and provides motivation for the soundness
and zero-knowledge guarantees that it provides.

As QuickSilver is an interactive proof system, it is described here as a protocol
executed between two parties: a prover and a verifier. When integrated into the non-
interactive FAEST signature scheme, these roles will be played by the signer and the
verifier, respectively.

2.3.1 Computing with Homomorphic Commitments. As described in Sec-
tion 2.1.1, secure VOLE protocols provide a list of tuples (ui, vi, qi) such that the
VOLE relation of Equation (1) holds for the global key ∆. One such tuple is re-
ferred to as an information-theoretic message authentication code (MAC) on the
value ui under the global key ∆, since the binding property implies that ui cannot
be modified (for a fixed qi) without knowledge of ∆.

Linear homomorphism. As mentioned, the information-theoretic MACs produced by
the VOLE protocol under the same global key are additively homomorphic: given n
such MACs (ui, vi, qi) and n+ 1 constants c, c1, . . . , cn ∈ F2, the prover and verifier
can obtain a MAC on the value u′ = c+

∑n
i=1 ci · ui by computing the VOLE tag v′

and the VOLE key q′ as follows:

v′ =

n∑
i=1

ci · vi and q′ = c ·∆+

n∑
i=1

ci · qi.

Note the absence of c in the computation of v′ for the prover, and the factor of ∆
multiplied to c for the verifier.

Top of Section 2 11 Table of Contents

Authenticated constants. When it is necessary to generate a standalone deterministic
VOLE MAC for a constant c ∈ F2 known to both parties, we let the prover set v := 0
and the verifier set q := c ·∆.

2.3.2 The QuickSilver Protocol for Circuits. Being defined in the VOLE-
hybrid model, the QuickSilver protocol assumes access to a secure VOLE protocol.
We instead use VOLEitH, and have the prover send all of the QuickSilver proof
messages, before revealing the verifier’s challenge ∆.

Let C denote an arithmetic circuit over F2, containing t multiplication gates, for
which the prover knows an input (i.e. the witness) w ∈ Fn2 of length n, such that
C(w) = 1. To prove its knowledge of the witness, the prover first interacts with the
VOLE protocol and the verifier in the following way.

1. The prover and verifier jointly request n + t MACs from the VOLE protocol.
This provides the prover with (ui, vi)i∈[1..n+t] and the verifier with (qi)i∈[1..n+t]

and ∆.

2. For every input element wi, for i ∈ [1..n], the prover computes di := wi − ui; it
then sends (di)i∈[1..n] to the verifier. The verifier then computes qi := qi+di ·∆ for
each i which means that the tuples (wi, vi, qi)i∈[1..n] are now valid VOLE MACs
for the witness w, instead of being MACs on the random values ui.

3. For every gate in the circuit C, with input values wα, wβ, the prover and verifier
proceed as follows.

– Linear gate for a, b, c ∈ F2: the prover computes wγ := a ·wα + b ·wβ + c and
vγ := a · vα + b · vβ while the verifier computes qγ := a · qα + b · qβ + c · ∆.
This does not require any communication between the parties.

– i-th multiplication gate, for i ∈ [1..t]: the prover computes wγ := wα · wβ
and sends dn+i := wγ − un+1 ∈ F2 to the verifier. The verifier then computes
qn+i := qn+i + dn+i ·∆ which means that the tuple (wγ , vn+i, qn+i) is now a
valid VOLE MAC for the output of the i-th multiplication gate.

At the issue of this interaction, the prover and the verifier now hold three valid
VOLE MACs (wα, vα, qα), (wβ, vβ, qβ) and (wγ , vγ , qγ) for the t multiplication gates
(α, β, γ)i contained in the execution of C(w). The verifier must now check that the
prover did not behave maliciously when it sent the t values dn+i which corrected the
random VOLE outputs un+i and their keys qn+i for the multiplication outputs wγ .

Checking multiplications. The QuickSilver protocol performs a check of the multipli-
cation values based on the observation that the verifier can compute a value bi ∈ F2λ

for each multiplication gate (α, β, γ)i, for i ∈ [1..t], as follows:

bi := qα · qβ − qγ ·∆
= vα · vβ + (wα · vβ + wβ · vα − vγ) ·∆+ (wα · wβ − wγ) ·∆2 (2)

If the prover was honest in the computation of di, then the ∆2 coefficient wα ·wβ−wγ
disappears, and the verifier needs only to check that

bi
?
= a0,i + a1,i ·∆ (3)

for a0,i := vα · vβ
and a1,i := wα · vβ + wβ · vα − vγ .

Top of Section 2 12 Table of Contents

To perform this check, the verifier requires the a0,i and a1,i values which the prover
can compute, since they only depend on the w and v values for the multiplication
gate (α, β, γ)i, and send to the verifier.

After receiving the t pairs (a0,i, a1,i) from the prover, the verifier accepts the
proof if Equation (3) holds for all i ∈ [1..t] and rejects if any of the tests fails. It
is in this check that the secrecy of the global key ∆, or in other words the binding
property of the VOLE MACs, guarantees the soundness of the proof: to cheat in the
computation of the witness, the prover would need to modify values u and tags v
such that the test of Equation (3) still passes; this requires guessing ∆.

Note. For the FAEST signature scheme, we obtain VOLE correlations for values
u ∈ F2, but we will instead be checking correctness of multiplications in F28 since
this is the field over which the AES S-box is defined (see Section 4.1). Since F2 is a
subfield of F28 , which is itself a subfield of F2λ , we are able to combine VOLE MACS
for 8 values in F2 into a VOLE MAC for a single value F28 , with the corresponding
tag and key still satisfying the VOLE relation for the original global key ∆.

The advantage of the QuickSilver protocol is that we can still commit to the
witness bits using di ∈ F2, which costs only 1 bit of proof size (and therefore signature
size) per bit of the witness, and then prove F28 multiplications at no extra cost, since
(a0,i, a1,i) are already in F2λ .

Optimising communication. Since the relation tested in Equation (3) is linear, the
QuickSilver protocol optimises the checking procedure using a random linear com-
bination. After receiving all the di values, the verifier sends a random challenge
χ ∈ F2λ to the prover. Instead of sending t pairs of values, the prover will then
compute

a0 :=

t∑
i=1

a0,i · χi and a1 :=

t∑
i=1

a1,i · χi,

and send only a single pair (a0, a1) to the verifier, thereby not needing to communi-
cate 2t F2λ field elements. Upon receiving this pair, the verifier will check

b :=
t∑
i=1

bi · χi
?
= a0 + a1 ·∆.

Note. In the FAEST signature scheme, this communication optimisation is imple-
mented differently, using a linear and universal hash function (see Section 4.2).

Adding zero-knowledge. The QuickSilver protocol adds one more component to this
multiplication check in order to guarantee the zero-knowledge property of the pro-
tocol. Indeed, revealing a0 and a1 to the verifier leaks information about the circuit
values used to compute them. To prevent this, the prover and the verifier jointly
request λ further random VOLE MACs which they combine into a single MAC
(a∗1, a

∗
0, b
∗) such that a∗1 ∈ F2λ (as opposed to u ∈ F2 output by the VOLE protocol)

and the VOLE relation of Equation (1) holds: b∗ = a∗0 + a∗1 ·∆.

Using this additional MAC, the prover instead sends ã0 := a0 + a∗0 and ã1 :=

a1 + a∗1 and the verifier checks whether b̃ := b+ b∗
?
= ã0 + ã1 ·∆.

Top of Section 3 13 Table of Contents

3 Preliminaries

In this section, we describe notation, basic data types and conversion algorithms,
the core cryptographic primitives (hash functions and PRGs) used in FAEST, as well
as security definitions that are used later in the document.

3.1 Notation

If b ∈ F2 or b ∈ {0, 1}, then b := 1 − b denotes the complement of b. When writing
+ we mean addition in the underlying ring, while ⊕ is always the XOR operation.
If we use either operation on vectors, then these will be component-wise operations.
We use the following index sets:

– [a..b] = {a, . . . , b− 1, b}
– [a..b) = {a, . . . , b− 1}

Vectors are column vectors by default, and we denote them in bold font, x ∈
{0, 1}n. For vectors of finite field elements (other than F2), we use bold italic x ∈ Fnq .
Matrices are given in capitals, X. We use the following conventions for indexing
elements of vectors and matrices:

– x[i]: i-th element of a vector

– x[a..b]: vector containing elements a through b (inclusive) of x

– X|i/X|i: row/column i of a matrix

– X|[a..b]: rows a through b of a matrix

– (x‖y): concatenation of vectors x and y

–
[
x y
]
: two-column matrix made from x and y

3.2 Data Types and Conversions

Finite field Arithmetic. FAEST uses finite field arithmetic over F28 (as part of AES),
F264 , F2128 , F2192 , and F2256 . These fields are defined as polynomials over F2, taken
modulo an irreducible polynomial P . The irreducible polynomials are taken from a
table of low Hamming weight irreducible polynomials [Ser98], which agrees with the
AES specification [AES01] for P8.

P8(α) = α8 + α4 + α3 + α1 + 1

P64(α) = α64 + α4 + α3 + α1 + 1

P128(α) = α128 + α7 + α2 + α1 + 1

P192(α) = α192 + α7 + α2 + α1 + 1

P256(α) = α256 + α10 + α5 + α2 + 1

Conversions To/From Bits, Field Elements and Integers. The following algorithms
are used to convert and manipulate finite field elements.

– ToField(x; k): maps x ∈ {0, 1}nk, for n ≥ 1 into a (vector of) field element(s)
x ∈ Fn

2k
using little-endian ordering.

– ToBits(x): maps x ∈ Fn
2k

, for n ≥ 1, into a bit string x ∈ {0, 1}nk.

Top of Section 3 14 Table of Contents

ToField(x, k)

1 : let αk ∈ F2k // The α element of F2k

2 : if x ∈ {0, 1}k

3 : return x :=
∑k−1
i=0 x[i] · αik

4 : if x ∈ {0, 1}nk

5 : new x ∈ Fn2k
6 : for i ∈ [0..n) do

7 : x[i] :=
∑k−1
j=0 x[ni+ j] · αjk

8 : return x

9 : else

10 : return ⊥

ToBits(x; k, n)

1 : new x := {} ∈ {0, 1}nk

2 : for i ∈ [0..n) do

3 : Parse x0 + x1αk + · · ·+ xk−1α
k−1
k = x[i] for xj ∈ F2

4 : xi := x0‖ · · · ‖xk−1 ∈ {0, 1}k
5 : x := x‖xi
6 : return x ∈ {0, 1}nk

ByteCombine(x, k)

1 : if 8 - k then return ⊥
2 : let α8 ∈ F2k // Generator of F28 within F2k (Appendix A)

3 : if x ∈ F8
2 or x ∈ F8

2k

4 : return x =
∑7
i=0 x[i] · αi8

5 : else

6 : return ⊥

Fig. 3.1: Data conversion functions

– ByteCombine(x; k): takes a vector of exactly 8 elements in F2 or F2k , where 8 | k,
and combines them into a single element in F2k using powers of an F28 generator
within F2k and little-endian ordering. (The precise generators we use are specified
in Appendix A.)

This ordering, where the most significant bit of the byte indicates the highest
power of the α8 generator element matches the interpretation of bytes as poly-
nomials in the AES standard [AES01].

In an implementation, depending on the representation of finite field elements in
large binary fields, ToField and ToBits may not require any operations (e.g. if field
elements are stored as arrays of polynomial coefficients). We use these functions in
this specification document to make explicit when we refer to field elements or to
bit strings, and to emphasize either to which finite field the elements belong, or the
length of the bit strings.

In Figure 3.2, we describe the bit decomposition algorithm BitDec which decom-
poses and integer i into d bits. The output is in little endian notation, i.e. the bit b0
is the parity bit of i. Additionally, Figure 3.2 contains the integer reconstruction al-

Top of Section 3 15 Table of Contents

BitDec(i, d)

1 : for j ∈ [0 . . . d− 1]

2 : bj := i mod 2

3 : i← (i− bj)/2
4 : return (b0, . . . , bd−1)

NumRec(d, (b0, . . . , bd−1))

1 : return
∑d−1
j=0 bj · 2

j

Fig. 3.2: Bit decomposition and reconstruction algorithms, little endian representation

gorithm, which maps a bit-string of length d uniquely into an integer in the interval
[0..2d). Clearly, NumRec(d,BitDec(i, d)) = i for all i ∈ [0, 2d).

3.3 Cryptographic Primitives

FAEST uses the following symmetric primitives:

– PRG : {0, 1}λ × {0, 1}128 → {0, 1}∗, a pseudo-random generator taking as input
a λ-bit seed and a 128-bit initialization vector

– H0 : {0, 1}λ+128 → {0, 1}λ × {0, 1}2λ, hash function for commitments

– H1 : {0, 1}∗ → {0, 1}2λ, collision-resistant hash function

– Hj2 : {0, 1}∗ → {0, 1}∗, for j ∈ {1, 2, 3}, hash function for the j-th Fiat-Shamir
challenge; modeled as a random oracle

– H3 : {0, 1}∗ → {0, 1}λ+128, hash function for randomness and IV derivation

PRG. We instantiate PRG(s, iv) using AES-λ in CTR mode with seed s and initial-
ization vector iv. The counter is a 128-bit, big-endian integer initially set to iv and
incremented by one after each block. To make the output length explicit, we write
PRG(s, iv; `) to indicate that ` output bits are required using the seed s. If ` is not
a multiple of 128, we compute d`/128e 128-bit blocks of output and truncate the
final block to ` mod 128 bits. We use PRG with a random, per-signature iv, in order
to prevent multi-target attacks when a large number of signatures are available (see
Section 10.2.2).

Hash functions. The hash functions are instantiated using SHAKE128, if λ = 128,
and SHAKE256 otherwise. As with PRG, for Hj2 we write Hj2(x; `) to specify the
output length ` in bits. To ensure domain separation, we append a single byte i to
the message, defined as follows:

– Hi(m) := SHAKE(m‖i, `), if i ∈ {0, 1, 3}
– Hj2(m) := SHAKE(m‖2, `)

Here, SHAKE is either SHAKE128 or SHAKE256, depending on λ. Note that
we do not need to explicitly separate Hj2 for different j, since in our usage, the
input is always a different length for each j, so we rely on SHAKE’s built-in domain
separation.

In our security proofs, we model H0,H1,H
j
2 as random oracles, while H3 is mod-

eled as a pseudo-random function (where the last λ input bits are the key). At one
point in the proof, we also model H0 as a secure pseudo-random generator.

Top of Section 3 16 Table of Contents

3.4 Security Definitions

We define the notion of families of one-way functions (OWF) as follows. Note that in
this document, we swap the key k and input x compared with the usual definition;
in our case, the adversary is given the input/output pair x, y, and must attempt
to recover the key k that selects the function fk from the family. This approach
corresponds naturally to how we build a one-way function from a block cipher,
where the secret key is the hard-to-find OWF input.

Definition 1 (One-way function). A family of functions {fk}k∈Kλ with fk :
Dλ → Cλ is called one-way, if (1) there exists a PPT algorithm F such that for
all ∀λ ∈ N, ∀k ∈ Kλ, ∀x ∈ Dλ: F(k, x) = fk(x), and (2) for every PPT algorithm A
the advantage

AdvOWFfA := Pr
[
fk(x) = fk∗(x)

∣∣∣ k ← Kλ, x← Dλ, k
∗ ← A(1λ, fk(x))

]
is negligible in λ.

We use the standard security notion for digital signature schemes, namely, exis-
tential unforgeability under adaptive chosen-message attacks (EUF-CMA). As a step-
ping stone to EUF-CMA security, we will first prove security of our scheme against
key-only attacks (EUF-KO) where the adversary is given the public key but no access
to a signing oracle.

Definition 2 (EUF-CMA security). Given a signature scheme Sig = (Gen,Sign,
Verify) and security parameter λ, we say that Sig is EUF-CMA-secure if any PPT
algorithm A has negligible advantage in the EUF-CMA game, defined as

AdvEUF-CMA
A = Pr

[
Verify(pk,msg∗, σ∗) = 1

∧msg∗ 6∈ Q

∣∣∣∣∣ (sk, pk)← Gen(1λ)

(msg∗, σ∗)← ASign(sk,·)(pk)

]
,

where ASign(sk,·) denotes A’s access to a signing oracle with private key sk and Q
denotes the set of messages msg that were queried to Sign(sk, ·) by A.

As a stepping stone to EUF-CMA security, we will first prove security of our
scheme against key-only attacks (EUF-KO) where the adversary is given the public
key but no access to a signing oracle.

Definition 3 (EUF-KO security). Given a signature scheme Sig = (Gen,Sign,
Verify) and security parameter λ, we say that Sig is EUF-KO-secure if any PPT
algorithms A has negligible advantage in the EUF-KO game, defined as

AdvEUF-KO
A = Pr

[
Verify(pk,msg∗, σ∗) = 1

∣∣∣∣∣ (sk, pk)← Gen(1λ)

(msg∗, σ∗)← A(pk)

]
.

4 Additional Building Blocks

In this section we present two important components of our scheme, namely AES and
the universal hash functions used in the consistency checks described in Section 2.

Top of Section 4 17 Table of Contents

4.1 AES and Rijndael

The AES algorithm is a symmetric-key cipher with a 128-bit block size and key
length of 128, 192 or 256 bits, running in R = 10, 12 or 14 rounds (depending on
the key length) [AES01]. These three versions of the AES algorithm will be denoted
AES128, AES192 and AES256 respectively. The AES algorithm is a standardised
variant of the Rijndael algorithm [DR02] which also accepts plaintext blocks of
length 192 and 256 bits.

Each execution of the AES algorithm uses three routines: key expansion (which
generates round keys), encryption (called “cipher” in the standard) and decryption
(or inverse cipher). The Rijndael algorithm uses the same routines, with different
size parameters. In this document, we will ignore the decryption routine as we will
use encryption (including key expansion) as a one-way function (OWF). To describe
these routines we will use the following terms.

(Cipher) Key. Secret, cryptographic key that is used by the key expansion routine
to generate the round keys (also called expanded key); it can be pictured as a
rectangular array of bytes, having four rows and Nk columns. Both AES and
Rijndael accept Nk ∈ {4, 6, 8}.

Round key. Round keys are values derived from the key using the key expansion
routine; they are applied to the state in the encryption routine.

State. Intermediate Cipher result that can be pictured as a rectangular array of
bytes, having four rows and Nst columns. In the case of AES Nst = 4 is fixed by
the standard. The Rijndael algorithm also accepts states with Nst ∈ {6, 8}.

S-box. Non-linear substitution table used to perform one-to-one byte substitutions.

The Rijndael algorithm sometimes runs more rounds in the encryption routine
than AES does for the same Nk, depending on the block size Nst. The following table
gives the different values of R; it can be summarised as R := max(Nk, Nst) + 6.

R Nst = 4 Nst = 6 Nst = 8

Nk = 4 10 12 14

Nk = 6 12 12 14

Nk = 8 14 14 14

The State. As mentioned above, the intermediary result of the AES encryption, on
which the next round of operations is about to be performed, can be arranged in a
4 × Nst rectangular array of bytes called the state. In this section, we denote this
state array by s, and refer to each byte of s as sr,c, where 0 ≤ r < 4 and 0 ≤ c < Nst

denote respectively the row and column indices of the byte.

We note that we follow the approach of the standard and view the state as an
array of columns when appropriate. That is, to interpret the 4×Nst array as a 4·Nst-
byte string, we read the rectangular array by first going down the first column, and
then moving on to the second (i.e. in column-major order):

s→ s0,0s1,0s2,0s3,0s0,1 . . . s1,Nst−1s2,Nst−1s3,Nst−1.

Top of Section 4 18 Table of Contents

4.1.1 The AES S-box. The only non-linear component of the AES and Rijndael
algorithms is the S-box byte-for-byte substitution; the SubBytes transformation is
then obtained by applying the S-box substitution independently to each byte of the
state. The S-box itself is composed of two transformations:

1. Taking the multiplicative inverse in the finite field GF (28), and mapping 0 to
itself.

2. Applying the following GF (2)-affine transformation:

bi 7→ bi ⊕ b(i+4) mod 8 ⊕ b(i+5) mod 8 ⊕ b(i+6) mod 8 ⊕ b(i+7) mod 8 ⊕ ci,

for 0 ≤ i < 8, where bi is the i-th bit of the byte, and ci is the i-th bit of a byte c
with value 0110 0011. We denote this transformation on the byte b as b′ = L(b)
but stress that it is only affine over GF (2).

4.1.2 The AES and Rijndael Algorithms. In addition to SubBytes, there
are three other operations defined by the AES standard: ShiftRows, MixColumns
and AddRoundKey. These same operations are similarly defined for the Rijndael
algorithm [DR02]. These are used as part of two routines, KeyExpansion and Encrypt,
which respectively expand the λ-bit key k into R+ 1 round keys and transform the
input array (plaintext block) into the output array (ciphertext block).

ShiftRowsNst. In this first transformation, the bytes in the rows of the State are
cyclically shifted left by different increments. For the AES algorithm with Nst = 4,
the first row is not changed, the second row shifts by one, the third row shifts by
two, and the last row shifts by three. This effects the following permutation on the
state:

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

−→

s0,0 s0,1 s0,2 s0,3

s1,1 s1,2 s1,3 s1,0

s2,2 s2,3 s2,0 s2,1

s3,3 s3,0 s3,1 s3,2

For the Rijndael algorithm, these shifts are the same when Nst = 6, but differ
for Nst = 8. In this second case, the third row is shifted by three (instead of two)
and the fourth row is shifted by four (instead of three).

MixColumns. This second transformation applies a F28-linear transformation to each
of the columns of the state, identically and independently. Since each column of the
state containes exactly four bytes in both AES and Rijndael, this transformation is
identical for both algorithms.

While the standard presents this transformation first using polynomial multipli-
cation in GF (28)[x] followed by reduction modulo x4 + 1, we present it here directly
as a matrix multiplication:

s′0,c
s′1,c
s′2,c
s′3,c

 =


{02} {03} {01} {01}
{01} {02} {03} {01}
{01} {01} {02} {03}
{03} {01} {01} {02}



s0,c

s1,c

s2,c

s3,c

 for 0 ≤ c < 4.

Here, the bytes of the state are viewed as F28 elements according to the ByteCombine
routine and the matrix coefficients are taken from the following values:

Top of Section 4 19 Table of Contents

Byte Field element

{01} 1

{02} α

{03} α+ 1

where α generates F28 .

AddRoundKey. This final transformation adds one of the round keys to the state
with a simple bit-wise XOR operation. Each round key is made up of Nst words of 4
bytes each, derived from the key expansion routine, which are each added onto the
state such that

s′0,c
s′1,c
s′2,c
s′3,c

 =


s0,c

s1,c

s2,c

s3,c

⊕


k̄[round ∗ 4 + c]0
k̄[round ∗ 4 + c]1
k̄[round ∗ 4 + c]2
k̄[round ∗ 4 + c]3

 for 0 ≤ c < 4,

where the k̄[i] are the expanded key words, and 0 ≤ round ≤ R indicates the current
round of the algorithm.

Key Expansion routine. Before starting the R rounds of the encryption routine, the
AES and Rijndael algorithms perform the key expansion routine on the cipher key
k to obtain a total of Nst · (R+ 1) expanded key words. To do so, the key expansion
routine makes use of two transformations:

SubWord Takes a 4-byte input word and returns an output word by applying the
AES S-box to each of the four bytes.

RotWord Takes a 4-byte input word [a0, a1, a2, a3] and performs a cyclic permutation
to return the 4-byte output word [a1, a2, a3, a0].

In addition, a round constant with value [Rcon[i]‖{00}‖{00}‖{00}] is added at cer-
tain intervals during the key expansion (after every multiple of Nk words); the value
Rcon[i] is computed as {02}i = αi8 ∈ F28 . The different values of Rcon[i] are for the
AES algorithm with Nst = 4 are listed in Table 4.1; the values of Rcon[i] for greater
values of i for the Rijndael algorithm can be derived by continuing the sequence.

Round index i 0 1 2 3 4 5 6 7 8 9

Rcon[i] {01} {02} {04} {08} {10} {20} {40} {80} {1b} {36}

Table 4.1: Round constant values for the AES algorithm, in bytes.

The KeyExpansion routine (Fig. 4.2) first places the Nk words of the key k into
the first Nk words of the expanded key k̄, and then computes each next word k̄[i]
as the XOR of the one before, k̄[i − 1], with the one Nk words back, k̄[i − Nk].
Every Nk words, a transformation to k̄[i − 1] is applied before the XOR: first with
RotWord, then with SubWord, and finally with an XOR with the round constant
word [Rcon[i/Nk − 1]‖{00}‖{00}‖{00}]. When λ = 256, for which Nk = 8, there is
an additional SubWord operation applied to k̄[i−1] when the word index i mod 8 = 4,
but without the RotWord transformation or the XOR with the round constant word.

Top of Section 4 20 Table of Contents

KeyExpansion(k; paramOWF)

1 : new k̄ ∈ [{0, 1}32;Nst(R+ 1)] // Empty expanded key, as an array of words

2 : for i ∈ [0..Nk) do

3 : k̄[i] := k[i] // Here k ∈ [{0, 1}32;Nk] is viewed as an array of words

4 : for i ∈ [Nk..Nst(R+ 1)) do

5 : tmp := k̄[i− 1]

6 : if i mod Nk = 0 then

7 : tmp := SubWord(RotWord(tmp)) + [Rcon[i/Nk − 1]‖{00}‖{00}‖{00}]
8 : if Nk > 6 and i mod Nk = 4 then

9 : tmp := SubWord(tmp)

10 : k̄[i] := k̄[i−Nk] + tmp

11 : return k̄

Fig. 4.2: The AES and Rijndael key expansion routines

Encryption routine. The Encrypt routine (Fig. 4.3) matches that given by the AES
standard [AES01, Figure 5] and the original Rijndael specification. First, the input
plaintext in ∈ {0, 1}32·Nst is bit-wise XOR-ed with the first Nst words of the ex-
panded key at line 3. Second, for all but the last round, the SubBytes, ShiftRows and
MixColumns transformations are applied in sequence to the state, before a new XOR
with the next Nst words of the expanded key (lines 5–9). Finally, the last round ap-
plies the same transformations with the exception of MixColumns. All of this leaves
the state containing the ciphertext array out ∈ {0, 1}32·Nst .

4.1.3 Proving AES and Rijndael with QuickSilver As described in Section 2
the FAEST algorithm is constructed from a QuickSilver zero-knowledge proof of
a preimage to the one-way function F , where F is constructed from the AES or
Rijndael algorithm. Proving statements for this relation therefore requires expressing
the key expansion and encryption routines as arithmetic circuits that are compatible
with the QuickSilver system. Here we provide an overview of how to do this, and we
refer the reader to Sections 6 and 7 for the detailed specification.

As presented in Section 2.3, the QuickSilver proof system is capable of proving
multiplication constraints, i.e. proving that three wire values wα, wβ, wγ satisfy the
constraint wα ·wβ = wγ . To find such constraints in the AES and Rijndael routines,
we look to the S-box, which contains the only non-F2-linear operation: the F28 field
inversion. For every occurrence of this inversion, mapping wα ∈ F28 to wγ := w−1

α

(assuming wα 6= 0), we can define the multiplicative constraint wα · wγ = 1. (Since
inversion is a single-input–single-output gate, we do not require wβ.)

Given that there are no other non-linear operations in the routines, proving
a preimage to the OWF F requires only describing how the bits of the inputs k
and x are linearly transformed, using the AES operations, into the inputs of the
S-boxes that occur during the computation of Ek(x), and how the outputs of the
F28-inversions are linearly transformed into the inputs of the next S-boxes.

Top of Section 4 21 Table of Contents

Encrypt(in, k̄; paramOWF)

1 : new state ∈ {0, 1}32·Nst

2 : state := in

3 : AddRoundKey(state, k̄[0..Nst − 1])

4 : for r ∈ [1..R) do

5 : SubBytes(state)

6 : ShiftRowsNst(state)

7 : MixColumns(state)

8 : AddRoundKey(state, k̄[Nstr..Nst(r + 1)− 1])

9 : SubBytes(state)

10 : ShiftRowsNst(state)

11 : AddRoundKey(state, k̄[NstR..Nst(R+ 1)− 1])

12 : return out := state

Fig. 4.3: The encryption routine

Given this, the QuickSilver proof that we compute in the FAEST algorithm pro-
ceeds in two stages:

1. Witness extension. The signer takes the secret input sk = k, which is the witness
for the QuickSilver relation, as well as the public input pk = (x, y) and executes
the AES operations required to compute Ek(x). After each non-linear operation,
the bits that depend on the previous S-box layer are recorded into an extended
witness which then contains information about all the outputs of the F28 inver-
sion operations. (The exact bits that are recorded are specified in Sections 6.1
and 7.1.) This extended witness is committed by the signer when it sends the di
values in the QuickSilver proof.

2. QuickSilver response. For each F28 inversion, the signer computes the wα input
values (either from the inputs k and x or from the extended witness) and the
wγ output values (either from the extended witness or from the output y). As
the inputs, output and extended witness are all represented as bits, this step
requires combining 8 bits into single F28 elements in the same way as in the AES
specification [AES01].

With the (wα, wγ) derived for every inversion operation, the signer can then
compute the (ã, b̃) QuickSilver response using the VOLE tags and the universal
linear hash information sent by the verifier (or derived from the Fiat–Shamir
hash function). The computation of these constraint values is specified in the
relevant subsections of Sections 6 and 7.

Note. This method of proving the execution of AES routines and operations with
the QuickSilver proof system requires FAEST to ensure that no inversion operation
ever has the value wα = 0 as input, otherwise the constraint wα · wγ = 1 would
not hold. To guarantee this, we select the FAEST key pair such that this property is
satisfied. This is described in more detail in Section 8.1 and the security implications
of restricting FAEST keys in this manner are discussed in Section 10.3.

Top of Section 4 22 Table of Contents

4.2 Universal Hashing

Two of the consistency checks used in FAEST require a family of linear, universal
hash functions. In order to get tight bounds and fast algorithms, we use a combi-
nation of small matrix hashes and polynomial hashes, which are designed to take
advantage of CPUs with 64-bit binary polynomial multipliers, whilst supporting
security parameters λ ∈ {128, 192, 256}.

The hash functions are specified in Figure 4.4, and analyzed in the remainder
of this section. We need the hashes to be ε-almost universal, as defined below. For
some intermediate building blocks, we will also use the ε-almost uniform property.

Definition 4. A family of linear hash functions is a family of matrices H ⊆ Fr×nq .
The family is ε-almost universal if for any non-zero x ∈ Fnq ,

Pr
H←H

[Hx = 0] ≤ ε.

The family is ε-almost uniform, if for any non-zero x ∈ Fnq and for any v ∈ Frq,

Pr
H←H

[Hx = v] ≤ ε.

Note that the algorithms in Figure 4.4 specify how a random bit string sd of the
appropriate length is used to sample a function from the family and evaluate it on
a given input x.

Our hashes must also satisfy the following hiding property.

Definition 5. A matrix H ∈ Fr×(n+h)
q is Fnq -hiding if the distribution of Hv is

independent from v[0..n) when v[n..n+h) ← Fhq . A hash family H ⊆ Fr×(n+h)
q is Fnq -

hiding if every H ∈ H is Fnq -hiding.

We will use the following, straightforward method of transforming a uniform
hash family into a universal family that is hiding.

Proposition 1. Let H ⊆ Fr×nq be an ε-almost uniform hash family. Let H′ ⊆
Fr×(n+r)
q be the family {[H Ir] : H ∈ H}, where Ir is the r × r identity matrix.

Then, it holds that (1) H′ is ε-almost universal, and (2) H′ is Fnq -hiding.

Proof. Let x =

[
x0

x1

]
be non-zero, for x0 ∈ Fnq and x1 ∈ Frq. If H′ ← H′ then,

Hx = 0 implies Hx0 = x1, and since at most one of x0,x1 are zero, we cannot have
x0 = 0, so this holds with probability at most ε. For the second part, the hiding
property holds because Ir ensures that if the last r elements of the input to the hash
are uniform then they perfectly mask the rest.

4.2.1 Standard Constructions. As building blocks, we use two well-known con-
structions of linear universal hash families [CW79, BJKS94]. The first is a sim-
ple matrix hash family, where H = Fr×nq , which is q−r-uniform. The second is a
polynomial-based hash, where the input v ∈ Fnq is parsed as the coefficients of a
polynomial of degree up to n− 1, and sampling a hash function involves evaluating
the polynomial at a randomly chosen point in Fq. Since the polynomial has at most
n − 1 roots over Fq, this hash family is (n − 1)/q-almost universal. We also use a
variant of this where the random point is restricted to a subset S ⊂ Fq, which is
(n− 1)/ |S|-universal.

Top of Section 4 23 Table of Contents

VOLEHash(sd, (x0,x1) ∈ {0, 1}`+λ × {0, 1}λ+B)

1 : // λ-bit ri, s; 64-bit t

2 : Parse sd = (r0‖r1‖r2‖r3‖s‖t) ∈ {0, 1}5λ+64

3 : ri := ToField(ri, λ), for i ∈ [0..3]

4 : s := ToField(s, λ)

5 : t := ToField(t, 64)

6 : `′ := λ · d(`+ λ)/λe
7 : x0 := x0‖0`

′−(`+λ) // pad to multiple of λ

8 : ŷ := ToField(x0, λ)

9 : y := ToField(x0, 64)

10 : h0 :=
∑`′/λ−1
i=0 s`

′/λ−1−i · ŷ[i] (in F2λ)

11 : h1 :=
∑`′/64−1
i=0 t`

′/64−1−i · y[i] (in F264)

12 : h′1 := ToField(ToBits(h1)‖0λ−64, λ)

13 : (h2, h3) := (r0h0 + r1h
′
1, r2h0 + r3h

′
1)

14 : h := (ToBits(h2)‖ToBits(h3)[0..B))⊕ x1

15 : return h

ZKHash(sd, (x0, x1) ∈ F`2λ × F2λ)

1 : // λ-bit ri, s; 64-bit t

2 : Parse sd = (r0‖r1‖s‖t) ∈ {0, 1}3λ+64

3 : ri := ToField(ri, λ), for i ∈ {0, 1}
4 : s := ToField(s, λ)

5 : t := ToField(t‖0λ−64, λ)

6 : h0 :=
∑`−1
i=0 s

`−1−i · x0[i]

7 : h1 :=
∑`−1
i=0 t

`−1−i · x0[i]

8 : h := ToBits(r0h0 + r1 · h1 + x1)

9 : return h

Fig. 4.4: Universal hashing algorithms

4.2.2 Composition and Truncation of Hashes. We rely on the following
composition results. Similar properties have been shown in e.g. [Sti92, Roy22].

Proposition 2. Let H,H′ be ε and ε′-almost universal families. Then, the concate-

nation {

[
H

H′

]
: H ∈ H,H′ ∈ H′} is εε′-almost universal.

Proof. Follows from independence of H and H′.

Proposition 3. Let H ⊆ Fr′×nq be ε-almost universal and H′ ⊆ Fr×r′q be ε′-almost
uniform. Then, the product {H′H : H ∈ H,H′ ∈ H′} is (ε+ ε′)-almost uniform.

Proof. Let x ∈ Fnq be non-zero. Then, x′ = Hx is non-zero with probability at least
1−ε. If x′ is non-zero, then for any v ∈ Frq, H′x′ 6= v with probability at least 1−ε′,
by the uniformity of H′. It follows that Pr[H′Hx 6= v] ≥ (1− ε)(1− ε′) ≥ 1− ε− ε′,
and so the product is an (ε+ ε′)-almost uniform family.

Proposition 4. Let δ ∈ N and H ⊆ Fr×nq be an ε-almost uniform family. Then, the

truncated family {H[0..r−δ) : H ∈ H} is εqδ-uniform.

Proof. For each H ∈ H, write H =

[
H0

H1

]
, where H0 ∈ F(r−δ)×n

q and H1 ∈ Fδ×nq .

Let y =

[
y0

y1

]
∈ Frq and x ∈ Fnq \ {0}. If H← H we have Pr[Hx = y] ≤ ε. Applying

conditional probability, we get

Top of Section 4 24 Table of Contents

Pr[H0x = y0 ∧H1x = y1] ≤ ε
Pr[H0x = y0] · Pr[H1x = y1 | H0x = y0] ≤ ε

Pr[H0x = y0] ≤ ε · (Pr[H1x = y1 | H0x = y0])−1

≤ ε · qδ

where the final inequality comes from fixing a y1 ∈ Fδq that maximizes p = Pr[H1x =

y1 | H0x = y0], which implies p is at least q−δ.

4.2.3 VOLE Universal Hash. The first check, to verify consistency of the VOLE

correlations, requires a family that is linear over F2. It’s evaluated on inputs in Fˆ̀
2,

where ˆ̀= `+ 2λ+B, ` is the witness length and B = 16 is a parameter chosen for
security.10

To build the hash, we map the seed sd into (r0, r1, r2, r3, s, t) ∈ F5
2λ
× F264 . The

input x ∈ Fˆ̀
2 is first split into (x0,x1), where x0 ∈ {0, 1}`+λ, and then x0 is parsed

twice, first as a vector ŷ of F2λ elements, and then as a vector y of F264 elements.
Then, compute

h0 = ŷ0s
ˆ̀/λ−1 + ŷ1s

ˆ̀/λ−2 + · · ·+ ŷˆ̀/λ−2s+ ŷˆ̀/λ−1 in F2λ ,

h1 = y0t
ˆ̀/64−1 + y1t

ˆ̀/64−2 + · · ·+ y ˆ̀/64−1t+ y ˆ̀/64−1 in F264

Viewing h1 as an element of F2λ (by zero-padding), the hash is then defined by
computing, in F2λ [

h2

h3

]
=

[
r0 r1

r2 r3

][
h0

h1

]
Finally, take the first λ + B bits of the concatenation of the field elements h2 and
h3, and XOR this with x1 to obtain the output.

We argue security of the construction below. Note that instead of aiming for
ε = 2λ, we aim for 2−λ−B, where B = 16 (Table 2.2). The extra few bits of security
compensate for the

(
τ
2

)
security loss in the proof of the SoftSpokenVOLE protocol

from [BBD+23].

Lemma 1. VOLEHash is an εv-almost universal hash family in F(λ+B)×ˆ̀

2 , for εv =

2−λ−B(1 + 2B−50), if ˆ̀≤ 213. Furthermore, VOLEHash is F`+λ2 -hiding.

Proof. We show εv-uniformity of the hash that outputs the first λ+B bits of (h2, h3),
i.e. without adding x1. By Proposition 1, this implies εv-universality of the final hash,
as well as the hiding property.

The first part of the hash — computing h0, h1 — is a concatenation of two
polynomial hashes, over either F2λ or F264 . These are ε-universal with ε = d/ |F|,
where d is the polynomial degree and F is the field, and we have d ≤ ˆ̀/64. Since
binary field multiplication is bilinear over F2, both of these hashes are also F2-linear.
Applying Proposition 2, their concatenation is then ε0-universal with ε0 ≤ ˆ̀2/2λ+76.
Note that for ˆ̀≤ 213, we have ε0 ≤ 2−λ−50.

10Our signature scheme actually calls VOLEHash on input an ˆ̀× λ matrix, which is translated
into computing the hash on each column separately, with the same seed.

Top of Section 4 25 Table of Contents

The second part of the hash starts with a 2 × 2 matrix hash, which is 2−2λ-
uniform. After truncation, the resulting hash is ε1-uniform for ε1 = 2−λ−B, by
Proposition 4. The final combined hash is the product of these two parts, so applying
Proposition 3 and summing the probabilities, we get that for all ˆ̀≤ 213, the hash
is εv-uniform for εv = ε0 + ε1 ≤ 2−λ−B(1 + 2B−50).

4.2.4 ZK Universal Hash. Our second hash, used for verifying AES constraints
in ZK, must be linear over F2λ . It works on inputs of `′ = ` + 1 field elements.
We map the seed sd into r0, r1, s, t ∈ F2λ , where r0, r1 and s are uniform, while t
(viewed as an F2 polynomial) is zero in all its degree ≥ 64 coefficients (and uniform
otherwise). Let

r> :=
[
r0 r1

] [s`−1 s`−2 · · · s 1

t`−1 t`−2 · · · t 1

]
The hash of an input x = (x0, x1) ∈ F`

2λ
× F2λ is simply h = r>x0 + x1.

Lemma 2. ZKHash is an εzk-almost universal hash family in F1×`′
2λ

, for εzk =

2−λ(1 + 2−38), if `′ ≤ 213. Furthermore, ZKHash is F`
2λ

-hiding.

Proof. As with VOLEHash, by Proposition 1 it suffices to show εzk-uniformity of the
hash defined by r>x0.

This hash is a product of two separate hashes. The outer hash — multiplication
by (r0 r1) — is a standard matrix hash, which is 2−λ-almost uniform. The inner
hash is a concatenation of two polynomial evaluations, the first of which defines an
almost-universal hash for ε0 = (`′ − 1)/2λ, and the second for ε1 = (`′ − 1)/264;
together, this gives an ε0ε1-almost universal hash (via Proposition 2), where ε0ε1 ≤
(`′)2/2λ+64 ≤ 2−λ−38, for all `′ ≤ 213. Combining the inner and outer parts, from
Proposition 3 we get that ZKHash is εzk-almost uniform for εzk = 2−λ(1+2−38).

5 VOLE-in-the-Head Functions

In this section we describe the algorithms required to build the VOLEitH proto-
col. This is constructed from an all-but-one vector commitment scheme, presented
in Section 5.1, whose outputs are transformed to VOLE correlations using the
ConvertToVOLE algorithm described in Section 5.2. Finally, both of these are used
to build the VOLEitH protocol, described in Section 5.3.

5.1 All-but-One Vector Commitments

The all-but-one vector commitment scheme VC is described in Figure 5.1. It con-
sists of the four algorithms Commit,Open,Reconstruct and Verify for commitment,
opening, reconstruction and verification respectively.

Note. The verification algorithm Verify is not used in the FAEST signature scheme,
but it is included here for completeness.

Commit generates a vector commitment of length N = 2d based on a seed r ∈
{0, 1}λ by expanding the seeds using PRG as a GGM tree. Each tree leaf kdj is
then expanded using H0 into two values, a seed sdj and commitment comj . A
hash of com0, . . . , comN−1 then serves as the commitment, while the sdj are the
committed messages. We additionally store all GGM tree keys kij and the comj

as decommitment information.

Top of Section 5 26 Table of Contents

VC.Commit(r, iv;N = 2d)

1 : k0
0 := r

2 : for i ∈ [1..d], j ∈ [0..2i−1) do

3 : (ki2j , k
i
2j+1) := PRG(ki−1

j , iv; 2λ)

4 : for j ∈ [0..N) do

5 : (sdj , comj) := H0(kdj ‖iv)

6 : h := H1(com0, . . . , comN−1)

7 : decom :=
((

(kij)j∈[0..2i)

)
i∈[1..d]

, (comj)j∈[0..N)

)
8 : return (com := h, decom, (sdj)j∈[0..N))

VC.Open(decom, (b0, . . . , bd−1))

1 : j∗ := NumRec(d, (b0, . . . , bd−1))

2 : Parse decom :=
((

(kij)j∈[0..2i)

)
i∈[1..d]

, (comj)j∈[0..N)

)
3 : a := 0

4 : for i ∈ [1..d] do

5 : cop[i] := ki
2a+bd−i

6 : a := 2a+ bd−i

7 : pdecom := (cop, comj∗)

8 : return pdecom

VC.Reconstruct(pdecom, (b0, . . . , bd−1), iv)

1 : Parse pdecom = (cop, comj∗)

2 : j∗ := NumRec(d, (b0, . . . , bd−1))

3 : a := 0, k0
0 := ⊥

4 : for i ∈ [1..d] do

5 : ki
2a+bd−i

:= cop[i]

6 : ki2a+bd−i := ⊥

7 : for j ∈ [0..2i−1) \ {a} do

8 : // reconstruct other keys

9 : (ki2j , k
i
2j+1) := PRG(ki−1

j , iv; 2λ)

10 : a := 2a+ bd−i

11 : for j ∈ [0..N) \ {j∗} do

12 : (sdj , comj) := H0(kdj ‖iv)

13 : h := H1(com0, . . . , comN−1)

14 : return (h, (sdj)j∈[0..N),j 6=j∗)

VC.Verify(com, pdecom, (b0, . . . , bd−1), iv)

1 : j∗ := NumRec(d, (b0, . . . , bd−1))

2 : (com, (sdj)j∈[0..N),j 6=j∗)

:= Reconstruct(pdecom, (bi)i∈[0..d), iv)

3 : if com = com

4 : return 1

5 : else

6 : return 0

Fig. 5.1: Commit, open, reconstruction and verification algorithms for all-but-one vector commit-
ment

Top of Section 5 27 Table of Contents

Open generates a partial decommitment pdecom which opens all but one message.
The index j∗ of message not to be opened is encoded as a bit string b0, . . . , bd−1,
where b0 encodes the lowest bit of j∗ and bd−1 is the highest bit of j∗. pdecom
consists of all siblings of GGM keys on the path between k0

0 and kdj∗ , aggregated
in the structure cop. This allows to reconstruct all messages except sdj∗ . pdecom
also contains comj∗ which can later be used to verify that cop is well-formed.

Reconstruct given index j∗ encoded as b0, . . . , bd−1 (identically as for Open) as well
as the partial decommitment pdecom for the same index, reconstructs all GGM
tree leafs kdj for j ∈ [0..2d) except j∗. It moreover recomputes comj for all indices
except j∗ (since comj∗ is an input contained in pdecom) and hashes them. It
outputs the hash as well as all the reconstructed leaf keys.

Verify verifies a commitment com (the hash of all the com0, . . . , comN−1) against
a partial decommitment pdecom allegedly opening all positions but j∗ which is
encoded via b0, . . . , bd−1 as for Open. It therefore runs Reconstruct and compares
the generated hash with com.

5.2 Seed Expansion and Conversion to VOLE

After committing to N random seeds using the all-but-one vector commitment, each
seed is expanded to a longer vector of Fq elements using PRG. The set of N vectors is
then converted into a VOLE correlation over FN , for N = 2d, which we represent as
d VOLE correlations over F2. Recall from Section 2.2 that this conversion requires
the signer to compute, in FN

u =
N−1∑
i=0

PRG(sdi), v =
N−1∑
i=0

i · PRG(sdi),

where PRG expands each seed to a vector in {0, 1}ˆ̀
and i is viewed as an element

of FN . The verifier, when given some index ∆ and sdi for all i 6= ∆, will compute

q =
N−1∑
i=0

(∆− i) · ri

Instead of computing the above directly, the signer and verifier use a divide-
and-conquer method [Roy22] to iteratively compute the vectors vj and qj , which
represent the j-th bits extracted from v,q. This algorithm is shown in Figure 5.2.

This algorithm is run by the prover using all N seeds sdi, while the verifier will
run the same algorithm where one of the seeds is unknown. It therefore sets one of
the seeds to ⊥ and ignores the u part of the output. For correctness, the verifier
must additionally permute its seeds according to the permutation i 7→ i⊕∆.

When run by prover and verifier on consistent inputs, the ConvertToVOLE algo-
rithm gives the following correlation guarantee.

Proposition 5. Let (sd0, . . . , sdN−1) and (sd′0, . . . , sd
′
N−1) be seeds such that sd′i =

sdi⊕∆ for all i > 0, for some δ ∈ [0..N), and sd′0 = ⊥. Then, if (δ0, . . . , δd−1) :=
BitDec(∆, d), (u,v0, . . . ,vd−1) := ConvertToVOLE(sd0, . . . , sdN−1; ˆ̀), and (u′,q0,
. . . ,qd−1) := ConvertToVOLE(sd′0, . . . , sd

′
N−1; ˆ̀), it holds that

qj = vj ⊕ δj · u, for j ∈ [0..d).

Top of Section 5 28 Table of Contents

ConvertToVOLE(sd0, . . . , sdN−1, iv; ˆ̀)

1 : d := logN

2 : r0,0 := 0
ˆ̀
if sd0 = ⊥ else PRG(sd0, iv; ˆ̀)

3 : for i ∈ [1..N) do

4 : r0,i := PRG(sdi, iv; ˆ̀)

5 : v0 := · · · := vd−1 := 0
ˆ̀

6 : for j ∈ [0..d) do

7 : for i ∈ [0..N/2j+1) do

8 : vj := vj ⊕ rj,2i+1

9 : rj+1,i := rj,2i ⊕ rj,2i+1

10 : u := rd,0

11 : return (u,v0, . . . ,vd−1) ∈ (Fˆ̀
2)d+1

Fig. 5.2: Seed expansion and conversion to VOLE

Proof. For convenience, we will consider the inputs of the algorithm with the PRG
already applied, i.e. view the strings r0,0, . . . , r0,N−1 as the prover’s input. Denoting
the verifier’s input by r′0,1, . . . , r

′
0,N−1, so it holds that r′0,i = r0,i⊕∆ for all i > 0.

First, we consider the rj,i values computed by the prover. For the value r1,i we
see that r1,0 = r0,0 ⊕ r0,1, r1,1 = r0,2 ⊕ r0,3 etc. Hence for r2,0 we obtain r2,0 =

r1,0 ⊕ r1,1 = r0,0 ⊕ · · · ⊕ r0,3. We can therefore write rj,i =
∑(i+1)·2j−1

k=i·2j r0,k and
u = rd,0 = r0,0 ⊕ · · · ⊕ rN−1,0.

We now argue correctness by induction on d. With d = 1, the prover, on input
(r0,0, r0,1), obtains output v0 = r0,1 and u = r0,0 ⊕ r0,1. The verifier, on input

(0
ˆ̀
, r′0,1 = r0,1⊕∆), outputs q0 = r0,1⊕∆, which equals v0⊕∆ ·u as required. Suppose

the algorithm is correct for inputs of length N/2 = 2d−1. We first show that the
j = 0 output is correct for inputs of length N . The prover’s relevant output is

v0 =
⊕N/2−1

i=0 r0,2i+1, the sum of all the odd-indexed r0 values. On the verifier’s
side, if δ0 = 0 then q0 = v0. Otherwise, if δ0 = 1 then q0 is the sum of all the
even-indexed r0 values, because for all i ∈ [0..N/2) we have r′2i+1 = r(2i+1)⊕∆, and

(2i+ 1)⊕∆ is even. It follows that q0 ⊕ v0 =
⊕N−1

i=0 ri = δj · u.
When j = 1, we can see the remaining iterations as recursively running the same

algorithm again, but on the set of N/2 inputs r1,0, . . . , r1,N/2−1 by the prover and

r′1,0, . . . , r
′
1,N/2−1 by the verifier. Let ∆′ =

∑d−1
j=1 2j−1δj , so ∆ = 2∆′+∆0. For i > 0,

it holds that

r′1,i = r0,2i⊕∆ ⊕ r0,(2i+1)⊕∆ = r0,2i⊕∆ ⊕ r0,2i⊕∆⊕1

= r0,2(i⊕∆′) ⊕ r0,2(i⊕∆′)⊕1 = r1,i⊕∆′

Therefore, in the recursive step, the verifier’s inputs for i > 0 are a permutation
of the prover’s, according to i 7→ i⊕∆′. By the induction hypothesis, it follows that
the final outputs vj ,qj , for j = 1, . . . , d− 1, satisfy qj = vj ⊕ δj · u.

5.3 VOLEitH: Commitment and Reconstruction

The main FAEST algorithms use the vector commitments and ConvertToVOLE pro-
cedure to commit the signer to a batch of τ VOLE instances of length ˆ̀. These are

Top of Section 5 29 Table of Contents

later verified, when the prover is challenged to open all-but-one of each set of vector
commitment messages, allowing the verifier to reconstruct its VOLE output.

We describe this with the following three algorithms.

5.3.1 Challenge Decomposition Let chall be a challenge bit string of length λ
and 0 ≤ i < τ0 + τ1 be an integer, the algorithm ChalDec (Figure 5.3) generates the
challenge for the ith VOLE instance from chall.

Given that λ = k0τ0 + k1τ1, where k0 := dλ/τe, k1 := bλ/τc, τ0 := (λ mod τ),
and τ1 := τ − (λ mod τ), the input bit string chall is divided into τ0 sub-strings of
length k0 and τ1 sub-strings of length k1. Equivalently, this means that the first τ0

VOLE instances have a challenge of k0 bits, while the other τ1 VOLE instances use
k1 bits.

ChalDec(chall, i; param)

1 : If i 6∈ [0 . . . τ0 + τ1) then abort

2 : Parse chall ∈ {0, 1}k0τ0+k1τ1

3 : if i < τ0 then

4 : lo := i · k0

5 : hi := (i+ 1) · k0 − 1

6 : else

7 : t := i− τ0
8 : lo := τ0k0 + t · k1

9 : hi := τ0k0 + (t+ 1) · k1 − 1

10 : return chall[lo . . . hi]

Fig. 5.3: Challenge decomposition algorithm

5.3.2 VOLE Commitment The algorithms VOLECommit and VOLEReconstruct
use two of the three main sub-procedures from our all-but-one vector commitment
from Section 5.1 to turn committed values into the sender values of VOLE correla-
tions as well as to create the receiver parts of VOLE correlations from commitment
openings, respectively.

VOLECommit(). The algorithm runs τ instances of VC.Commit and compresses each
of these using ConvertToVOLE into a number of columns. The first τ0 vector com-
mitments have length 2k0 while the other τ1 have length 2k1 , so ConvertToVOLE
compresses the first τ0 vector commitments each down to k0 vectors while the oth-
ers each become k1 vectors. This generates, as output, a vector u and a matrix
V. Here u are the secrets of the first VOLE correlation, while V = [V1, . . . ,Vτ]
column-wise contains the v-vectors of the τ VOLE correlation. Each column vector
in V has length ˆ̀. This implicitly generates τ · ˆ̀ VOLE correlations over small fields
and with different secrets. VOLECommit therefore generates c1, . . . , cτ−1 to allow to
correct the sender secrets of VOLE instances 1, . . . , τ − 1 to the same secret vec-
tor u of VOLE instance 0. Using these corrections c1, . . . , cτ−1, τ VOLE instances
with the same secret but different challenges can then be lifted row-wise to one
VOLE correlation with a larger challenge. Finally, the function computes a hash of

Top of Section 5 30 Table of Contents

FAEST.VOLECommit(r, iv, ˆ̀; param)

1 : (r0‖ . . . ‖rτ−1) := PRG(r, iv; τλ)

2 : τ0 := λ mod τ

3 : for i ∈ [0..τ) do

4 : b := 0 if i < τ0 else b := 1

5 : (comi, decomi, (sdi,0, . . . , sdi,Nb−1)) := VC.Commit(ri, iv;Nb = 2kb)

6 : (ui,vi,0, . . . ,vi,kb−1) := ConvertToVOLE(sdi,0, . . . , sdi,Nb−1, iv; ˆ̀)

7 : Vi := [vi,0 · · ·vi,kb−1] ∈ F
ˆ̀×kb
2

8 : V := [V0 · · ·Vτ−1] ∈ Fˆ̀×λ
2 // stored in column major representation

9 : u := u0

10 : for i ∈ [1 . . . τ) do

11 : ci := u⊕ ui

12 : hcom := H1(com0‖ . . . ‖comτ−1)

13 : return (hcom, decom0, . . . , decomτ−1, c1, . . . , cτ−1,u,V)

Fig. 5.4: FAEST-VOLE commitments

FAEST.VOLEReconstruct(chall, (pdecomi)i∈[0...τ), iv, ˆ̀; param)

1 : for i ∈ [0 . . . τ) do

2 : b := 0 if i < τ0 else 1

3 : (δi,0, . . . , δi,kb−1) := ChalDec(chall, i; param)

4 : ∆i := NumRec(kb, (δi,0, . . . , δi,kb−1))

5 : (comi, (si,j)j=[0..Nb),j 6=i) := VC.Reconstruct(pdecomi, (δi,0, . . . , δi,kb−1, iv))

6 : for j ∈ [1 . . . Nb) let sdi,j := si,j⊕∆i // j and ∆i as bit-strings for ⊕

7 : (u′i,qi,0, . . . ,qi,kb−1) := ConvertToVOLE(⊥, sdi,1, . . . , sdi,Nb−1, iv; ˆ̀)

8 : Q′i := [qi,0 · · ·qi,kb−1] ∈ F
ˆ̀×kb
2 // stored in column major representation

9 : hcom := H1(com0‖ . . . ‖comτ−1)

10 : return (hcom,Q
′
0, . . . ,Q

′
τ−1)

Fig. 5.5: FAEST-VOLE reconstruction

Top of Section 5 31 Table of Contents

all τ vector commitments, allowing to verify openings of these later more efficiently,
and additionally outputs information decomi allowing to efficiently decommit vector
commitment i later.

5.3.3 VOLE Reconstruction Once the signer has committed to its execution
of the VOLEitH protocol with VOLECommit, the verifier can use the commitments,
together with the challenge that generates the ∆ key, to reconstruct the matching
VOLE keys using VOLEReconstruct.

VOLEReconstruct(). The algorithm decomposes the challenge chall into τ challenges
∆0, . . . ,∆τ−1 of the τ VOLE instances generated by VOLECommit. These ∆i, along
with partial decommitments pdecomi, comi, are used to recompute corresponding
vector commitment openings for all positions except ∆i (as well as to recompute the
actual comi). The algorithm permutes the VC openings by ∆i and compresses them
by applying ConvertToVOLE, thus obtaining τ matrices of VOLE receiver messages
Q′i for each VOLE instance where the challenge is ∆i. Note that these Q′i are for
possibly different messages and must later be corrected (using ci) outside of this
function. Moreover, VOLEReconstruct during VC opening recomputes all comi and
their hash can then be used to check if the partial openings are valid decommitments
for all vector commitments.

6 AES Functions

The principal FAEST algorithms use the following building blocks to perform AES-
related operations to compute the QuickSilver proof of knowledge of the OWF for
the FAEST-λ parameter sets.

– Section 6.1: FAEST.AES.ExtendWitness in Figure 6.1
– Section 6.2: FAEST.AES.KeyExpFwd in Figure 6.2.
– Section 6.2: FAEST.AES.KeyExpBkwd in Figure 6.3.
– Section 6.2: FAEST.AES.KeyExpCstrnts in Figure 6.4.
– Section 6.3: FAEST.AES.EncFwd in Figure 6.6.
– Section 6.3: FAEST.AES.EncBkwd in Figure 6.7.
– Section 6.3: FAEST.AES.EncCstrnts in Figure 6.8.
– Section 6.4: FAEST.AES.AESProve in Figure 6.9.
– Section 6.4: FAEST.AES.AESVerify in Figure 6.11.

As it does not make use of the Rijndael algorithm, this section is written assuming
that Nst = 4.

6.1 Witness Extension

The AES.ExtendWitness algorithm (Fig. 6.1), generates the extended witness w ∈
{0, 1}` for use with the AES.AESProve algorithm; it takes as input the AES key k,
the FAEST public key pk and the instance parameters param and paramOWF.

To derive the extended witness w, ExtendWitness first executes the KeyExpansion
routine for AES, as described in Section 4.1, to generate the expanded key k̄. It then
saves the words of the expanded key which depend on the AES key k as key bits

(i.e. the first Nk words), and the words that depend on the SubWord operation as
non-lin word bits (i.e. every 4 or 6 words thereafter, depending on λ).

Top of Section 6 32 Table of Contents

FAEST.AES.ExtendWitness(k, pk; param, paramOWF)

1 : Parse pk = (in,out) ∈ {0, 1}128β × {0, 1}128β // decompose OWF key

2 : new w ∈ {0, 1}≤` // New empty extended witness of length at most `

// Key expansion routine and saving witness bits

3 : new k̄ ∈ [{0, 1}32; 4(R+ 1)] // Array of words for expanded key

4 : k̄ := KeyExpansion(k, Nk)

5 : w := k̄[0..Nk − 1] // Saving the first Nk words, which contain k

6 : ik := Nk

7 : for j ∈ [0..Ske/4) do

8 : w := w‖k̄[ik] // Saving the word that depends on SubWord

9 : if λ = 192 then ik := ik + 6

10 : else ik := ik + 4

// Encryption routine and saving witness bits

11 : for b ∈ [0..β) do

12 : new state ∈ {0, 1}128

13 : state := inb

14 : AddRoundKey(state, k̄[0..3])

15 : for j ∈ [1..R) do

16 : SubBytes(state)

17 : ShiftRows(state)

18 : w := w‖state // Saving the state bits, in column-major order

19 : MixColumns(state)

20 : AddRoundKey(state, k̄[4j..4j + 3])

// Last round is not committed to, so not computed

21 : return w ∈ {0, 1}`

Fig. 6.1: Extending the witness from the AES key and the input plaintext block(s).

For each block b ∈ {0, 1} of the plaintext input in (one block if λ = 128, two
blocks if λ ∈ {192, 256}, extracted from pk), ExtendWitness next runs through the
encryption routine operations by initializing an empty state and performing the AES
round operations, as described in Section 4.1. After each ShiftRows operation (for
the first R−1 rounds), the algorithm records the current bits of the state (in column-
major order) denoted as shift row bitsb, into the extended witness w. The state
after the last round of ShiftRows is not recorded, since it can be derived linearly
during AESProve using the FAEST public key output bits out and the expanded
key.

It finally outputs the extended witness in the form:

w :=

{
key bits‖non-lin word bits‖shift row bits0 λ = 128

key bits‖non-lin word bits‖shift row bits0‖shift row bits1 λ 6= 128

6.2 Deriving Constraints for the Key Expansion Routine

The AES.KeyExpCstrnts algorithm, described in Figure 6.4, generates the first Ske
constraint values for the QuickSilver proof of the AES circuit computed by the
AES.AESProve algorithm. To do so, it must derive the inputs and outputs of the

Top of Section 6 33 Table of Contents

Inputs

m {1, λ} size of the field elements.

x F`ke2m extended witness values, VOLE tags, or VOLE keys.

Mtag {0, 1} 1 if x is VOLE tags, 0 otherwise.

Mkey {0, 1} 1 if x is VOLE keys, 0 otherwise.

∆ F2λ ∪ {⊥} global VOLE key if Mkey = 1, ⊥ otherwise.

FAEST.AES.KeyExpFwd(m,x, Mtag, Mkey,∆; param, paramOWF)

1 : if Mtag = 1 ∧ Mkey = 1 or Mkey = 1 ∧∆ = ⊥ then return ⊥

2 : new y ∈ F(R+1)·128
2m // The output array

3 : for i ∈ [0..λ) do y[i] := x[i] // First Nk words

4 : iwd := λ // Index to read words from x

5 : for j ∈ [Nk..4(R+ 1)) do // Remaining key words, R+ 1 round keys, 4 words each

6 : if j mod Nk = 0 or (Nk > 6 and j mod Nk = 4)

7 : y[32j..32j + 31] := x[iwd..iwd + 31] // Selecting expanded key word bits

8 : iwd := iwd + 32

9 : else

10 : for i ∈ [0..32) do y[32j + i] = y[32(j −Nk) + i] + y[32(j − 1) + i]

11 : return y ∈ F(R+1)·128
2m

Fig. 6.2: Transforming witness or VOLE values into F28 -inverse input values for the key schedule
routine.

F28 inversions within the S-boxes from the witness values and their VOLE tags, or
the VOLE keys, passed by AESProve. This is the role of the AES.KeyExpFwd and
AES.KeyExpBkwd algorithms, described in Figures 6.2 and 6.3.

KeyExpFwd. Given the security parameter λ, a dimension parameter m, a vector of
witness values, their VOLE tags or their VOLE keys x, two flags Mtag and Mkey,
and optionally the global VOLE key ∆, this algorithm derives the R+ 1 round keys
for the AES encryption routine.

KeyExpBkwd. Given the security parameter λ, a dimension parameter m, a vector
of witness values, their VOLE tags or their VOLE keys x, a vector of expanded
key values, their VOLE tags or their VOLE keys xk, two flags Mtag and Mkey, and
optionally the global VOLE key ∆, this algorithm derives the bits representing the
Ske outputs of the F28 inverse operations from the S-boxes in the key expansion
routine.

KeyExpCstrnts. Given the security parameter λ, the extended witness values for the
key expansion w, their VOLE tags v, a flag Mkey, optionally the VOLE keys for the
witness values q and optionally the global VOLE key ∆, this algorithm derives Ske
constraint values for the QuickSilver proof of AES, either (a0,a1) if Mkey = 0, or b
if Mkey = 1.

Note. The KeyExpFwd and KeyExpBkwd perform the same arithmetic operations
either on circuit values w, their VOLE tags v or their VOLE keys q. Since the ho-
momorphic property of the VOLE MACs prescribes different operations for addition
of constants in the case of tags and keys, we use the Mtag and Mkey Boolean flags

Top of Section 6 34 Table of Contents

Inputs

m {1, λ} size of the field elements.

x F`ke2m extended witness values, VOLE tags, or VOLE keys.

xk F`ke2m expanded key values, VOLE tags or VOLE keys.

Mtag {0, 1} 1 if x is VOLE tags, 0 otherwise.

Mkey {0, 1} 1 if x is VOLE keys, 0 otherwise.

∆ F2λ ∪ {⊥} global VOLE key if Mkey = 1, ⊥ otherwise.

FAEST.AES.KeyExpBkwd(m,x,xk, Mtag, Mkey,∆; param, paramOWF)

1 : if Mtag = 1 ∧ Mkey = 1 or Mkey = 1 ∧∆ = ⊥ return ⊥
2 : new y ∈ F8Ske

2m // The output array

3 : iwd := 0 // Index to read words from xk

4 : c := 0 // Counting S-boxes

5 : rmvRcon := True, ircon := 0 // Handling round constant removal

6 : for j ∈ [0..Ske) do // Iterating S-box-wise

7 : x̃ := x[8j..8j + 7]− xk[iwd + 8c..iwd + 8c+ 7] // Removing XOR-ed byte

8 : if ¬Mtag and rmvRcon and c = 0 then // Removing Rcon[]

9 : rcon := Rcon[ircon] ∈ {0, 1}8, ircon := ircon + 1 // See Table 4.1 for Rcon[i]

10 : new r ∈ F8
2m

11 : for i ∈ [0..8) do // Lifting the bits of the round constant one by one

12 : r[i] := rcon[i] · (Mkey ·∆+ (1F2m − Mkey))

13 : x̃[i] := x̃[i]− r[i]

14 : new ỹ ∈ F8
2m // Array for the affine layer inverse

15 : for i ∈ [0..8) do

16 : ỹ[i] := x̃[i− 1 mod 8] + x̃[i− 3 mod 8] + x̃[i− 6 mod 8]

17 : ỹ[0] := ỹ[0] + (1F2m − Mtag) · (Mkey ·∆+ (1F2m − Mkey))

18 : ỹ[2] := ỹ[2] + (1F2m − Mtag) · (Mkey ·∆+ (1F2m − Mkey))

19 : y[8j..8j + 7] := ỹ[0..7] // Storing the affine layer inverse

20 : c := c+ 1

21 : if c = 4 then // Move iwd every 4 S-boxes

22 : c := 0

23 : if λ = 192 then iwd := iwd + 192

24 : else

25 : iwd := iwd + 128

26 : if λ = 256 then rmvRcon := ¬rmvRcon
27 : return y ∈ F8Ske

2m

Fig. 6.3: Transforming witness or VOLE values into F28 -inverse output values for the key schedule
routine.

Top of Section 6 35 Table of Contents

Inputs listed in Table 6.5.

FAEST.AES.KeyExpCstrnts(w,v, Mkey, q,∆; param, paramOWF)

1 : if Mkey = 0 // If computing wire values and tags

2 : k = KeyExpFwd(1,w, 0, 0,⊥; param, paramOWF) // Expanded key

3 : vk = KeyExpFwd(λ,v, Mtag = 1, 0,⊥; param, paramOWF) // Expanded key tags

4 : w̄ = KeyExpBkwd(1,w[λ..],k, 0, 0,⊥; param, paramOWF) // Inverse outputs

5 : vw̄ = KeyExpBkwd(λ,v[λ..],vk, Mtag = 1, 0,⊥; param, paramOWF) // Inverse output tags

6 : iwd := 32(Nk − 1) // Index of the first word to read

7 : doRotWord = True // Handling performing RotWord for AES256

8 : for j ∈ [0..Ske/4) do // Iterating word-wise

9 : new k̂,vk̂, ŵ,vŵ ∈ F4
2λ

10 : for r ∈ [0..3] do // Combining F2 values and VOLE tags into F28 values and tags

11 : r′ := r

12 : if doRotWord then r′ := r + 3 mod 4 // Rotating the index performs RotWord

13 : k̂[r′] := ByteCombine(k[(iwd + 8r)..(iwd + 8r + 7)];λ) // Note writing index r′

14 : vk̂[r′] := ByteCombine(vk[(iwd + 8r)..(iwd + 8r + 7)];λ) // Note writing index r′

15 : ŵ[r] := ByteCombine(w̄[32j + 8r..32j + 8r + 7];λ) // Note index counter j

16 : vŵ[r] := ByteCombine(vw[32j + 8r..32j + 8r + 7];λ)

17 : if λ = 256 then doRotWord := ¬doRotWord // Only alternate RotWord for AES256

18 : for r ∈ [0..3] do // Computing A0, A1, 4 S-boxes at a time

19 : A0,4j+r := vk̂[r] · vŵ[r]

20 : A1,4j+r := (k̂[r] + vk̂[r]) · (ŵ[r] + vŵ[r])− 1F
28
−A0,4j+r // Tag of product is 0

21 : if λ = 192 then iwd := iwd + 192

22 : else iwd := iwd + 128

23 : return (A0,0, . . . , A0,Ske−1) ∈ FSenc

2λ
, (A1,0, . . . , A1,Ske−1) ∈ FSenc

2λ
,k,vk // Note return of k,vk

24 : else // If computing tag keys

25 : qk = KeyExpFwd(λ, q, 0, Mkey = 1,∆; param, paramOWF) // VOLE keys of the expanded key

26 : qw̄ = KeyExpBkwd(λ, q[λ..], qk, 0, Mkey = 1,∆; param, paramOWF) // Inverse output keys

27 : iwd := 32(Nk − 1) // Index of the first word to read

28 : doRotWord := True // Handling performing RotWord for AES256

29 : for j ∈ [0..Ske/4) do // Iterating word-wise

30 : new q̂k, q̂w̄ ∈ F4
2λ

31 : for r ∈ [0..3] do // Combining VOLE keys over F2 into VOLE keys over F28

32 : r′ := r

33 : if doRotWord then r′ := r + 3 mod 4 // Rotating the index performs RotWord

34 : q̂k[r′] := ByteCombine(qk[(iwd + 8r)..(iwd + 8r + 7)], λ)

35 : q̂w̄[r] := ByteCombine(qw̄[(32j + 8r)..(32j + 8r + 7)], λ) // Note index counter j

36 : if λ = 256 then doRotWord := ¬doRotWord // Only alternate RotWord for AES256

37 : for r ∈ [0..3] do // Computing B, 4 S-boxes at a time

38 : B4j+r := q̂k[r] · q̂w̄[r]−∆ ·∆ // ∆ is VOLE key of expected result k · w̄ = 1

39 : if λ = 192 then iwd := iwd + 192

40 : else iwd := iwd + 128

41 : return (B0, . . . , BSke−1) ∈ FSenc

2λ
, qk // Note return of qk

Fig. 6.4: Deriving the constraint values for the AESλ key expansion routine.

Top of Section 6 36 Table of Contents

to indicate what kind of values the algorithm is computing. In KeyExpCstrnts the
signer and the verifier set these flags as follows, depending on the kind of values they
wish to compute.

Party Kind Mtag Mkey

Signer
Wire values 0 0

VOLE tags 1 0

Verifier VOLE keys 0 1

The same applies for the algorithms related to the encryption routine in Sections 6.3
and 7.2.

6.2.1 KeyExpFwd Description. To compute the values for inputs of the S-boxes
in the key expansion routine, this algorithm in fact computes the values for all
of the required round keys, so that they may be used in the encryption routine
algorithms; the KeyExpCstrnts algorithm will select which of these it requires to
derive the constraint values.

Following the AES key expansion routine, the KeyExpFwd algorithm initialises
the first λ values (equivalently the first Nk words) of the expanded key with the
first λ values of the input vector x. It then proceeds with one word of the expanded
key at a time, starting from index Nk. If the word index j corresponds to a word
derived from a SubWord operation (i.e. when j mod Nk = 0 or when Nk > 6 and
j mod Nk = 4) then it reads the word from the value vector x and places it in the
expanded key. Otherwise it computes the XOR, represented here by field addition,
of two previous words (as per the key expansion specification) and stores the result
as the new word.

6.2.2 KeyExpBkwd Description. To compute the values for outputs of the F28

inversions within the S-boxes in the key expansion routine, this algorithm selects the
relevant values from the expanded key values x, removes the byte that was XOR-ed
into the key word and is contained in xk, removes the round constant if necessary
(i.e. when not computing VOLE tags), and inverts the S-box F2-affine layer.

To simplify writing into the output array y, KeyExpBkwd iterates over the Ske
S-boxes contained within the key expansion. However, since the relevant expanded
key words (after the first Nk) are situated at intervals of either 4 (for AES128 and
AES256) or 6 (for AES192), the algorithm maintains an alternative index iwd which
is increased after every 4 S-box by the appropriate amount (in bits). In addition,
since only one out of every two relevant words for AES256 have the round constant
added into them, the boolean flag rmvRcon (which is always true for λ = 128, 192),
is negated every 4 S-boxes for λ = 256.

6.2.3 KeyExpCstrnts Description. The inputs for the KeyExpCstrnts algorithm
are listed in Table 6.5. To derive the Ske constraint values, this algorithm first calls
KeyExpFwd to derive the extended key values and VOLE tags k and vk, or VOLE
keys qk, depending on Mkey. It then calls KeyExpBkwd on the witness values and
VOLE tags, or VOLE keys, together with the expanded key values and VOLE tags,
or VOLE keys, to derive the corresponding elements for the outputs of the F28

inversions within the S-boxes.

Top of Section 6 37 Table of Contents

Input Type Description

w F`ke2 ∪ {⊥} Witness values for the key expansion, or ⊥ if computing keys.

v F`ke
2λ
∪ {⊥} VOLE tags for the key expansion, or ⊥ if computing keys.

Mkey {0, 1} Whether this algorithm is operating on VOLE keys or not.

q F`ke
2λ
∪ {⊥} VOLE keys for the key expansion, or ⊥ if computing values or tags.

∆ F2λ ∪ {⊥} The VOLE global key if computing VOLE keys, ⊥ otherwise.

Table 6.5: Inputs to the KeyExpCstrnts algorithm.

For each set of four S-boxes, the KeyExpCstrnts algorithm reads the previous ex-
panded key elements (tracked with the iwd index) and combine them to an element
of the F28 (sub)field using ByteCombine in order to derive the inputs to the F28 in-
versions of the S-boxes; it similarly combines the outputs produced by KeyExpBkwd.
Then, for each of the four S-boxes, it computes the A0 and A1 values, or B values for
VOLE keys, as described in Section 2.3. Finally, it returns the vector(s) of constraint
values, either (a0,a1) or b, together with the expanded key values and VOLE tags,
or VOLE keys, depending on Mkey.

6.3 Deriving Constraints for the Encryption Routine

The AES.EncCstrnts algorithm (Fig. 6.8) generates a vector of Senc constraint val-
ues for the QuickSilver proof of the AES circuit computed by the AES.AESProve
algorithm. To do so, it must derive the inputs and outputs of the F28 inversions con-
tained within the S-boxes from the witness values and their VOLE tags, or the VOLE
keys, passed by AESProve. This is the role of the AES.EncFwd and AES.EncBkwd
algorithms, described in Fig. 6.6 and Fig. 6.7.

EncFwd. Given the security parameter λ, a dimension parameter m, a vector of
witness values, their VOLE tags or their VOLE keys x, a vector of expanded key
values, their VOLE tags or their VOLE keys xk, an AES plaintext block in, two
flags Mtag and Mkey, and optionally the global VOLE key ∆, this algorithm derives
the Senc inputs of the F28 inversions in the S-boxes of one execution of the encryption
routine.

EncBkwd. Given the security parameter λ, a dimension parameter m, a vector of
witness values, their VOLE tags or their VOLE keys x, a vector of expanded key
values, their VOLE tags or their VOLE keys xk, an AES ciphertext block out,
two flags Mtag and Mkey, and optionally the global VOLE key ∆, this algorithm
derives the Senc outputs of the F28 inversions in the S-boxes of one execution of the
encryption routine.

EncCstrnts. Given the security parameter λ, the extended witness values for one
execution of the encryption routine w, their VOLE tags v, a flag Mkey, optionally
the VOLE keys for the witness values q and optionally the global VOLE key ∆, this
algorithm derives Senc constraint values for the QuickSilver proof of AES, either
(a0,a1) if Mkey = 0, or B if Mkey = 1.

6.3.1 EncFwd Description. To compute the values for inputs of the S-boxes
in the encryption routine, this algorithm selects the ShiftRows output bit values,

Top of Section 6 38 Table of Contents

Inputs

m {1, λ} size of the field elements.

x F`enc2m extended witness values, VOLE tags, or VOLE keys.

xk F128(R+1)
2m expanded key values, VOLE tags, or VOLE keys.

in or out {0, 1}128 AES plaintext or ciphertext block.

Mtag {0, 1} 1 if x and xk are VOLE tags, 0 otherwise.

Mkey {0, 1} 1 if x and xk are VOLE keys, 0 otherwise.

∆ F2λ ∪ {⊥} global VOLE key if Mkey = 1, ⊥ otherwise.

FAEST.AES.EncFwd(m,x,xk, in, Mtag, Mkey,∆; param, paramOWF)

1 : new y ∈ FSenc

2λ
// The returned array of bytes

2 : for i ∈ [0..16) do // First AddRoundKey operation

3 : for j ∈ [0..8) do

4 : xin[j] = in[8i+ j] · (1F2m − Mtag) · (Mkey ·∆+ (1F2m − Mkey))

5 : y[i] := ByteCombine(xin[0..7];λ) + ByteCombine(xk[8i..8i+ 7];λ)

6 : for j ∈ [1..R) do // Iterating round-wise

7 : for c ∈ [0..3] do // Computing MixColumns and AddRoundKey column-wise

8 : ix := 128(j − 1) + 32c // Index to read from the witness or VOLE array

9 : ik := 128j + 32c // Index to read from the round key array

10 : iy := 16j + 4c // Index to write to the state array

11 : new x̂, x̂k ∈ F4
2λ

12 : for r ∈ [0..3] do

// Reading 8 elements and combining for F28 arithmetic within F2λ

13 : x̂[r] := ByteCombine(x[ix + 8r..ix + 8r + 7];λ)

14 : x̂k[r] := ByteCombine(xk[ik + 8r..ik + 8r + 7];λ)

// 1,2,3 are elements of the F28 sub-field of F2λ

15 : 1 := ByteCombine({01};λ), 2 := ByteCombine({02};λ), 3 := ByteCombine({03};λ)

16 : y[iy + 0] := x̂[0] · 2 + x̂[1] · 3 + x̂[2] · 1 + x̂[3] · 1 + x̂k[0]

17 : y[iy + 1] := x̂[0] · 1 + x̂[1] · 2 + x̂[2] · 3 + x̂[3] · 1 + x̂k[1]

18 : y[iy + 2] := x̂[0] · 1 + x̂[1] · 1 + x̂[2] · 2 + x̂[3] · 3 + x̂k[2]

19 : y[iy + 3] := x̂[0] · 3 + x̂[1] · 1 + x̂[2] · 1 + x̂[3] · 2 + x̂k[3]

20 : return y ∈ FSenc

2λ
// F28 -inverse inputs for the R S-box layers

Fig. 6.6: Transforming witness or VOLE values into F28 -inverse inputs for the encryption routine.

Top of Section 6 39 Table of Contents

Inputs

m {1, λ} size of the field elements.

x F`enc2m extended witness values, VOLE tags, or VOLE keys.

xk F128(R+1)
2m expanded key values, VOLE tags, or VOLE keys.

in or out {0, 1}128 AES plaintext or ciphertext block.

Mtag {0, 1} 1 if x and xk are VOLE tags, 0 otherwise.

Mkey {0, 1} 1 if x and xk are VOLE keys, 0 otherwise.

∆ F2λ ∪ {⊥} global VOLE key if Mkey = 1, ⊥ otherwise.

FAEST.AES.EncBkwd(m,x,xk,out, Mtag, Mkey,∆; param, paramOWF)

1 : new y ∈ FSenc

2λ
// The returned array of bytes

2 : for j ∈ [0..R) do // Iterating round-wise

3 : for c ∈ [0..3] do // Iterating column-wise

4 : for r ∈ [0..3] do // Iterating row-wise

5 : ird := 128j + 32(c− r mod 4) + 8r // c− r mod 4 inverts ShiftRows

6 : if j < R− 1 then

7 : x̃[0..7] := x[ird..ird + 7]

8 : else

9 : new xout ∈ F8
2m

10 : for i ∈ [0..8) do

11 : xout[i] = out[ird − 128j + i] · (1F2m − Mtag) · (Mkey ·∆+ (1F2m − Mkey))

12 : x̃[0..7] := xout[0..7]− xk[128 + ird..128 + ird + 7] // Inverting AddRoundKey

13 : new ỹ ∈ F8
2m // Array for the affine layer inverse

14 : for i ∈ [0..8) do

15 : ỹ[i] := x̃[i− 1 mod 8] + x̃[i− 3 mod 8] + x̃[i− 6 mod 8]

16 : ỹ[0] := ỹ[0] + (1F2m − Mtag) · (Mkey ·∆+ (1F2m − Mkey))

17 : ỹ[2] := ỹ[2] + (1F2m − Mtag) · (Mkey ·∆+ (1F2m − Mkey))

18 : y[16j + 4c+ r] := ByteCombine(ỹ[0..7];λ)

19 : return y ∈ FSenc

2λ
// F28 -inverse outputs for the R S-box layers

Fig. 6.7: Transforming witness or VOLE values into F28 -inverse outputs for the encryption routine.

Top of Section 6 40 Table of Contents

Inputs

in and out {0, 1}128 AES plaintext or ciphertext blocks.

w F`enc2 ∪ {⊥} extended witness values, or ⊥ if Mkey = 1.

v F`enc
2λ
∪ {⊥} extended witness VOLE tags, or ⊥ if Mkey = 1.

k F128(R+1)
2 ∪ {⊥} expanded key values, or ⊥ if Mkey = 1.

vk F128(R+1)

2λ
∪ {⊥} expanded key VOLE tags, or ⊥ if Mkey = 1.

Mkey {0, 1} 1 if computing VOLE keys (for verifier), 0 otherwise.

q F`enc
2λ
∪ {⊥} extended witness VOLE keys for encryption, or ⊥ if Mkey = 0.

qk F128(R+1)

2λ
∪ {⊥} expanded key VOLE keys, or ⊥ if Mkey = 0.

∆ F2λ ∪ {⊥} global VOLE key if Mkey = 1, ⊥ otherwise.

FAEST.AES.EncCstrnts(in,out,w,v,k,vk, Mkey, q, qk,∆; param, paramOWF)

1 : if Mkey = 0 // If computing wire values and tags

2 : s := EncFwd(1,w,k, in, 0, 0,⊥; param, paramOWF) // Inverse inputs

3 : vs := EncFwd(λ,v,vk, in, Mtag = 1, 0,⊥; param, paramOWF) // Inverse input tags

4 : s̄ := EncBkwd(1,w,k,out, 0, 0,⊥; param, paramOWF) // Inverse outputs

5 : vs̄ := EncBkwd(λ,v,vk,out, Mtag = 1, 0,⊥; param, paramOWF) // Inverse output tags

6 : for j ∈ [0..Senc) do // Iterating S-box-wise

7 : A0,j := vs[j] · vs̄[j]

8 : A1,j := (s[j] + vs[j]) · (s̄[j] + vs̄[j])− 1F
28
−A0,j

9 : return (A0,0, . . . , A0,Senc−1) ∈ FSenc

2λ
, (A1,0, . . . , A1,Senc−1) ∈ FSenc

2λ

10 : else // If computing tag keys

11 : qs := EncFwd(λ, q, qk, in, 0, Mkey = 1,∆; param, paramOWF) // Inverse input keys

12 : qs̄ := EncBkwd(λ, q, qk,out, 0, Mkey = 1,∆; param, paramOWF) // Inverse output keys

13 : for j ∈ [0..Senc) do // Iterating S-box-wise

14 : Bj := qs[j] · qs̄[j]−∆ ·∆ // ∆ is VOLE key of expected result s · s̄ = 1

15 : return (B0, . . . , BSenc−1) ∈ FSenc

2λ

Fig. 6.8: Deriving the constraint values for the AES-λ encryption routine.

Top of Section 6 41 Table of Contents

their VOLE tags or their VOLE keys from x, combines them into F28 (sub-)field
elements, performs the arithmetic for MixColumns and then adds the expanded key
values, their VOLE tags or their VOLE keys, previously read as bit values from xk

and combined into F28 (sub-)field elements.
Depending on the round index j ∈ [1..R) and state column index c ∈ [0..3], the

indices ix, ik keep track of the reading positions for the witness array x and the
expanded key array xk respectively, and index iy keeps track of the writing position
for the return array y which contains the input values for the S-boxes, as F28 (sub-)
field elements.

6.3.2 EncBkwd Description. To compute the values for outputs of the inver-
sion operations in the S-boxes of the encryption routine, this algorithm selects the
ShiftRows output bit values, their VOLE tags or their VOLE keys from x and first
removes the expanded key values, their VOLE tags or their VOLE keys read from
xk. (In case it is computing values for the final layer of S-boxes, the values are read
from the output block out instead and transformed into either VOLE tag or VOLE
key values.) Undoing the ShiftRows operation (to work backwards towards the Sub-
Bytes operation) is done in the calculation of the ird index, using c− r mod 4, which
ensures that the correct “un-shifted” value is read.

With the output of the S-box obtained, the F2-affine transformation is inverted
with bit-wise operations before combining the 8 elements into a single F28 (sub-)
field element and storing it in the return array.

6.3.3 EncCstrnts Description. To derive a vector of Senc constraints values, this
algorithm first calls EncFwd and EncBkwd to derive the input and output values and
VOLE tags, or VOLE keys, for each of the S-boxes in the encryption routine. Using
these, it computes the A0 and A1 values, or B values, for each of the S-boxes, and
returns them.

6.4 Proving and Verifying AES Constraints

The AES.AESProve (Fig. 6.9) and AES.AESVerify (Fig. 6.11) algorithms perform the
operations of the QuickSilver zero-knowledge proof system instantiated for the AES
algorithm.

AESProve. Given the security parameter λ, the extended witness bits w, the VOLE
masks u, the VOLE tags V, the FAEST public-key pk, and the QuickSilver chal-
lenge chall, this algorithm derives the QuickSilver response (ã, b̃).

AESVerify. Given the security parameter λ, the masked witness bits d, the VOLE
keys Q, the QuickSilver challenge chall2, the VOLE challenge chall3, the QuickSilver
proof party ã, and the FAEST public key pk this algorithm reconstructs parts of the
QuickSilver response necessary for verifying the QuickSilver proof.

6.4.1 AESProve Description In order to compute the QuickSilver response
(ã, b̃), this algorithm first embeds the witness and VOLE tag bit-strings w and
V to F2 and F2λ respectively. With the first `ke elements of these, it then derives
the first Ske constraint values for a0 and a1 using the AES.KeyExpCstrnts algorithm;
this also outputs the values and VOLE tags for the expanded AES key, k and vk.

Top of Section 6 42 Table of Contents

Inputs

w {0, 1}` extended witness values, as bits.

u {0, 1}`+λ masking values for the QuickSilver response as bits.

V {0, 1}(`+λ)×λ VOLE tags of the masking values, as bit-strings.

pk {0, 1}2·β·128 FAEST public key

chall {0, 1}3λ+64 ZKHash challenge to compute QuickSilver response (ã, b̃).

FAEST.AES.AESProve(w,u,V, pk, chall; param, paramOWF)

1 : for i ∈ [0..`) do w[i] := ToField(w[i]; 1)

2 : for i ∈ [0..`+ λ) do v[i] := ToField(V|i;λ)

3 : Parse pk = (in,out) ∈ {0, 1}128β × {0, 1}128β // decompose public key

4 : in0 := in[0..127], out0 := out[0..127]

5 : if β = 2 then in1 := in[128..255], out1 := out[128..255]

6 : new a0,a1 ∈ F≤C
2λ

7 : w̃ := w[0..`ke − 1], ṽ := v[0..`ke − 1] // Selecting key expansion bits

8 : (ã0, ã1,k,vk) := AES.KeyExpCstrnts(w̃, ṽ, Mkey = 0,⊥,⊥; param, paramOWF)

9 : a0 := ã0, a1 := ã1 // Saving values

10 : w̃ := w[`ke..`ke + `enc − 1], ṽ := v[`ke..`ke + `enc − 1] // Selecting encryption bits

11 : (ã0, ã1) := AES.EncCstrnts(in0,out0, w̃, ṽ,k,vk, Mkey = 0,⊥,⊥,⊥; param, paramOWF)

12 : a0 := a0‖ã0, a1 := a1‖ã1 // Appending values

13 : if β = 2

14 : w̃ := w[`ke + `enc..`− 1], ṽ := v[`ke + `enc..`− 1] // Selecting encryption bits

15 : (ã0, ã1) := AES.EncCstrnts(in1,out1, w̃, ṽ,k,vk, Mkey = 0,⊥,⊥,⊥; param, paramOWF)

16 : a0 := a0‖ã0, a1 := a1‖ã1 // Appending values

17 : for i ∈ [`..`+ λ) do

18 : u[i− `] := ToField(u[i], λ)

19 : u∗ :=
∑
i∈[0..λ) u[i]αiλ, v∗ :=

∑
i∈[0..λ) v[`+ i]αiλ // Where αλ ∈ F2λ

20 : ã := ZKHash(chall, (a1‖u∗))
21 : b̃ := ZKHash(chall, (a0‖v∗))
22 : return (ã, b̃)

Fig. 6.9: Proof of AES constraints

Top of Section 6 43 Table of Contents

Q0 Qτ0−1 Qτ0 Qτ−1

τ0 · k0 τ1 · k1

`+ λ

k0 k0 k1 k1

qi,0 qi,kbQi =

`

λ

Q = · · · · · ·

· · ·

Fig. 6.10: Dividing Q into sub-matrices Qi and then columns qi,j in AESVerify lines 6–11.

Using these, as well as the next `enc elements of w and v and the (first) plaintext
and ciphertext blocks in and out derived from pk, it computes the next Senc con-
straint values for a0 and a1 using the AES.EncCstrnts algorithm. If the security level
requires a second execution of the encryption routine, i.e. when λ ∈ {192, 256}, then
AESProve selects the next `enc witness bits and their VOLE tags and computes the
last Senc constraint values for a0 and a1 using the AES.EncCstrnts algorithm, to-
gether with the expanded key values and VOLE tags and the second plaintext and
ciphertext blocks.

With the constraint values a0 and a1 now computed, the algorithm next com-
putes the zero-knowledge masking values u∗ and v∗ using the last λ elements of the
VOLE masks u and tags V. Finally, it calls the ZKHash algorithm with the challenge
chall on a1‖u∗ and a0‖v∗ to compute the response (ã, b̃).

6.4.2 AESVerify Description The algorithm first reconstructs the VOLE and
QuickSilver challenge ∆ (observe that both use the same challenge). It then, as
for AESProve, extracts out the AES input and output blocks from pk. As before,
depending on the security level, these will either be one or two blocks of 128 bits.

Next, the algorithm adds d to the appropriate columns of Qi depending on the
challenge for the VOLE instance i. Since all VOLE key tags (i.e. all Qi) have been
corrected to be tags for the same secret (u) in the calling function, this will correct
the key tags to be for the AES witness committed in d. The division of the Q matrix
specified in lines 6–11 is pictured in Figure 6.10. After this correction, all rows now
encode the correct VOLE key tags of the verification operation, so we lift all rows
Q|i using ToField to the field used for verification computations of QuickSilver.

Following this, the AES operations are applied as follows: The first `ke VOLEs
are used by KeyExpCstrnts to compute VOLE key tags (b1) that allow to verify key
scheduling operations for correctness, as well as VOLE key tags qk corresponding
to the key schedule output. EncCstrnts computes VOLE key tags corresponding to
the actual evaluation of the cipher, where we either obtain one output block b2 if

Top of Section 6 44 Table of Contents

Inputs

d {0, 1}` masked extended witness, as bits.

Q {0, 1}(`+λ)×λ VOLE keys of the masking values u, as bit-strings.

ã F2λ ZKHash of constraint values

chall2 {0, 1}3λ+64 ZKHash challenge to compute q̃.

chall3 {0, 1}λ The VOLE challenge to correct Q with d according to ∆.

pk {0, 1}2·β·128 The public key consisting of AES inputs and outputs.

FAEST.AES.AESVerify(d,Q, chall2, chall3, ã, pk; param, paramOWF)

1 : ∆ := ToField(chall3;λ) // reconstruct VOLE and MAC challenge

2 : Parse pk = (in,out) ∈ {0, 1}128β × {0, 1}128β // decompose public key

3 : in0 := in[0..127], out0 := out[0..127]

4 : if β = 2 then in1 := in[128..255], out1 := out[128..255]

5 : Write Q :=
[
Q0 · · ·Qτ−1

]
// Q0, . . . ,Qτ0−1 have k0 columns, others k1

6 : for i ∈ [0..τ) do // make commitments to witness

7 : b := 0 if i < τ0 else 1

8 : (δ0, . . . , δkb−1) := ChalDec(chall3, i; param)

9 : Write Qi = [qi,0, . . . ,qi,kb−1] // consider kb columns separately

10 : for j ∈ [0, kb) do

11 : qi,j [0..`− 1] := qi,j [0..`− 1]⊕ δj · d // perform q[i] := q[i] + d[i] ·∆ column-wise

12 : for i ∈ [0..`+ λ) do // create global MAC

13 : q[i] := ToField(Q|i;λ) // create VOLE keys row-wise (i.e. transpose Q)

14 : new b ∈ F≤C
2λ

15 : (b1, qk) = KeyExpCstrnts(⊥,⊥, Mkey = 1, q[0..`ke − 1],∆; param, paramOWF)

16 : b2 = EncCstrnts(in0,out0,⊥,⊥,⊥,⊥, Mkey = 1, q[`ke..`ke + `enc), qk,∆; param, paramOWF)

17 : if β = 1 then b := [b1‖b2] else

18 : b3 = EncCstrnts(in1,out1,⊥,⊥,⊥,⊥, Mkey = 1, q[`ke + `enc..`), qk,∆; param, paramOWF)

19 : b := [b1‖b2‖b3]

20 : q∗ :=
∑
i∈[0..λ) q[`+ i]αiλ // VOLE key for u∗ and v∗ in AESProve; αλ ∈ F2λ

21 : q̃ := ZKHash(chall2, (b‖q∗))
22 : return q̃ − ã ·∆

Fig. 6.11: Verification of AES constraints

we verify one AES instance or two outputs b2,b3 if there are 2 AES instances to be
verified.

Before compressing the tags, we have to reconstruct the VOLE key tag from
q for the u∗ and v∗ values that are used to make ã, b̃ zero-knowledge. This tag is
denoted as q∗. Then, all these VOLE instances, denoted as b‖q∗, are linearly hashed
using ZKHash using the ZKHash challenge chall2. This yields a final VOLE key tag
q̃ in F2λ , and we return the value q̃ − ã∆ which equals b̃ if the proof was indeed
correct.

Top of Section 7 45 Table of Contents

7 Rijndael-EM Functions

The principal FAEST.Rijndael-EM algorithms use the following building blocks to
perform AES and Rijndael operations to compute the QuickSilver proof of the OWF
in the Even–Mansour variant for the FAEST-EM-λ parameter sets.

– Section 7.1: FAEST.Rijndael-EM.ExtendWitness in Figure 7.1
– Section 7.2: FAEST.Rijndael-EM.EncFwd in Figure 7.2.
– Section 7.2: FAEST.Rijndael-EM.EncBkwd in Figure 7.3.
– Section 7.2: FAEST.Rijndael-EM.EncCstrnts in Figure 7.4.
– Section 7.3: FAEST.Rijndael-EM.EMProve in Figure 7.5.
– Section 7.3: FAEST.Rijndael-EM.EMVerify in Figure 7.6.

7.1 Witness Extension

The Rijndael-EM.ExtendWitness algorithm (Fig. 7.1), generates the extended witness
w ∈ {0, 1}` for use with the Rijndael-EM.EMProve algorithm; it takes as input the
FAEST private key k (which is an AES or Rijndael input block), the FAEST public
key pk (which is an AES key) and the instance parameters param and paramOWF.

In order to compute the encryption routine, ExtendWitness first executes the
KeyExpansion routine for AES or Rijndael, as described in Section 4.1, to generate
the expanded key x. Unlike the non-EM variant, it does not save any state of this
routine as the input pk is public.

ExtendWitness then runs through the encryption routine operations by initialising
an empty state and performing the AES or Rijndael round operations, as described
in Section 4.1 using k as input. It begins by recording the FAEST key k to the
extended witness. Then, after each ShiftRowsNst operation (for the first R−1 rounds),
the algorithm records the current bits of the state (in column-major order) denoted
as shift row bits, into the extended witness w. The state after the last round of
ShiftRowsNst is not recorded, since it can be derived linearly during EMProve using
the secret key k, the FAEST public key output bits y and the public expanded key
p̄k.

It finally outputs the extended witness in the form:

w := key bits‖shift row bits

7.2 Deriving Constraints for the Encryption Routine

The Rijndael-EM.EncCstrnts algorithm (Fig. 7.4) generates a vector of Senc constraint
values for the QuickSilver proof, computed by the Rijndael-EM.EMProve algorithm,
of the circuit for the EM OWF based on AES. To do so, it must derive the inputs
and outputs of the F28 inversions contained within the S-boxes from the witness
values and their VOLE tags, or the VOLE keys, passed by EMProve. This is the
role of the Rijndael-EM.EncFwd and Rijndael-EM.EncBkwd algorithms, described in
Fig. 7.2 and Fig. 7.3.

EncFwd. Given the parameters param, paramOWF, a dimension parameter m, a vector
of witness values, their VOLE tags or their VOLE keys z, a vector of expanded
key values, their VOLE tags or their VOLE keys x, two flags Mtag and Mkey, and
optionally the global VOLE key ∆, this algorithm derives the Senc inputs of the F28

inversions in the S-boxes of one execution of the encryption routine.

Top of Section 7 46 Table of Contents

FAEST.Rijndael-EM.ExtendWitness(k, pk; param, paramOWF)

Parse pk = (in,out) ∈ {0, 1}λ × {0, 1}λ // decompose public key

1 : new w ∈ {0, 1}≤` // New empty extended witness of length at most `

// Key expansion routine

2 : new x ∈ [{0, 1}32;Nst(R+ 1)] // Array of words for expanded key

3 : x := KeyExpansion(in; paramOWF)

// Encryption routine and saving witness bits

4 : w := k // Saving the OWF key to the extended witness

5 : new state ∈ {0, 1}λ

6 : state := k

7 : AddRoundKey(state,x[0..Nst])

8 : for j ∈ [1..R) do

9 : SubBytes(state)

10 : ShiftRowsNst(state)

11 : w := w‖state // Appending the state bits, in column-major order

12 : MixColumns(state)

13 : AddRoundKey(state,x[Nstj..Nst(j + 1)− 1])

// Last round is not committed to, so not computed

14 : return w ∈ {0, 1}`

Fig. 7.1: Extending the witness from the FAEST-EM secret key k and the FAEST-EM public key
pk.

EncBkwd. Given the parameters param, paramOWF, a dimension parameter m, a
vector of witness values, their VOLE tags or their VOLE keys z, a vector of expanded
key values, their VOLE tags or their VOLE keys x, values, VOLE tags or VOLE
keys for an AES ciphertext block zout, two flags Mtag and Mkey, and optionally the
global VOLE key ∆, this algorithm derives the Senc outputs of the F28 inversions in
the S-boxes of one execution of the encryption routine.

EncCstrnts. Given the parameters param, paramOWF, the bits of the OWF output
block out, the bits of the AES expanded key x, the extended witness values w,
their VOLE tags v, a flag Mkey, optionally the VOLE keys for the witness values q
and optionally the global VOLE key ∆, this algorithm derives Senc constraint values
for the QuickSilver proof of AES-EM, either (a0,a1) if Mkey = 0, or B if Mkey = 1.

7.2.1 Rijndael-EM.EncFwd Description. To compute the values for inputs of
the S-boxes in the encryption routine, after performing the first AddRoundKey op-
eration, this algorithm selects the ShiftRowsNst output bit values, their VOLE tags
or their VOLE keys from z, combines them into F28 (sub-)field elements, performs
the arithmetic for MixColumns and then adds the expanded key values, their VOLE
tags or their VOLE keys, previously read as bit values from x and combined into
F28 (sub-)field elements.

Depending on the round index j ∈ [1..R) and state column index c ∈ [0..Nst], the
index i keeps track of the reading positions for the witness array z and the expanded
key array x, and index iy keeps track of the writing position for the return array y
which contains the input values for the S-boxes, as F28 (sub-) field elements.

Top of Section 7 47 Table of Contents

Inputs

m {1, λ} The size of the field elements.

z F`2m extended witness values, VOLE tags, or VOLE keys.

x Fλ(R+1)
2m expanded key values, VOLE tags, or VOLE keys.

Mtag {0, 1} 1 if z and x contain VOLE tags, 0 otherwise

Mkey {0, 1} 1 if z and x contain VOLE keys, 0 otherwise

∆ F2λ ∪ {⊥} global VOLE key if Mkey = 1, ⊥ otherwise

FAEST.Rijndael-EM.EncFwd(m,z,x, Mtag, Mkey,∆; param, paramOWF)

1 : new y ∈ FSenc

2λ
// The returned array of bytes

2 : for j ∈ [0..4Nst) do // First AddRoundKey operation

3 : y[j] := ByteCombine(z[8j..8j + 7];λ) + ByteCombine(x[8j..8j + 7];λ)

4 : for j ∈ [1..R) do // Iterating round-wise

5 : for c ∈ [0..Nst) do // Computing MixColumns and AddRoundKey column-wise

6 : i := 32Nstj + 32c // Index to read from the z and x arrays

7 : iy := 4Nstj + 4c // Index to write to the state array

8 : new ẑ, x̂[r] ∈ F4
2λ

9 : for r ∈ [0..3] do

// Reading 8 elements and combining for F28 arithmetic within F2λ

10 : ẑ[r] := ByteCombine(z[i+ 8r..i+ 8r + 7];λ)

11 : x̂[r] := ByteCombine(x[i+ 8r..i+ 8r + 7];λ)

// 1,2,3 are elements of the F28 sub-field of F2λ

12 : 1 := ByteCombine({01};λ), 2 := ByteCombine({02};λ), 3 := ByteCombine({03};λ)

13 : y[iy + 0] := ẑ[0] · 2 + ẑ[1] · 3 + ẑ[2] · 1 + ẑ[3] · 1 + x̂[0]

14 : y[iy + 1] := ẑ[0] · 1 + ẑ[1] · 2 + ẑ[2] · 3 + ẑ[3] · 1 + x̂[1]

15 : y[iy + 2] := ẑ[0] · 1 + ẑ[1] · 1 + ẑ[2] · 2 + ẑ[3] · 3 + x̂[2]

16 : y[iy + 3] := ẑ[0] · 3 + ẑ[1] · 1 + ẑ[2] · 1 + ẑ[3] · 2 + x̂[3]

17 : return y ∈ FSenc

2λ
// F28 -inverse inputs for the R S-box layers

Fig. 7.2: Transforming witness or VOLE values into F28 -inverse inputs for the encryption routine
in EM mode.

Top of Section 7 48 Table of Contents

Inputs

m {1, λ} The size of the field elements.

z F`2m extended witness values, VOLE tags, or VOLE keys.

x Fλ(R+1)
2m expanded key values, VOLE tags, or VOLE keys.

zout Fλ2m AES output block values, VOLE tags or VOLE keys

Mtag {0, 1} 1 if z, x and zout contain VOLE tags, 0 otherwise

Mkey {0, 1} 1 if z, x and zout contain VOLE keys, 0 otherwise

∆ F2λ ∪ {⊥} global VOLE key if Mkey = 1, ⊥ otherwise

FAEST.Rijndael-EM.EncBkwd(m,z,x,zout, Mtag, Mkey,∆; param, paramOWF)

1 : new y ∈ FSenc

2λ
// The returned array of bytes

2 : for j ∈ [0..R) do // Iterating round-wise

3 : for c ∈ [0..Nst] do // Iterating column-wise

4 : for r ∈ [0..3] do // Iterating row-wise

5 : icol := c− r mod Nst // c− r mod Nst and extra shift below inverts ShiftRowsNst

6 : if Nst = 8 and r ≥ 2 then icol := icol − 1 mod Nst // Extra shift when Nst = 8

7 : ird := λ+ 32Nstj + 32icol + 8r

8 : if j < R− 1 then

9 : z̃[0..7] := z[ird..ird + 7]

10 : else

11 : new z̃out ∈ F8
2m

12 : for i ∈ [0..8) do

13 : z̃out[i] = zout[ird − 32Nst(j + 1) + i]

14 : z̃[0..7] := z̃out[0..7]− x[ird..ird + 7] // Inverting AddRoundKey

15 : new ỹ ∈ F8
2m // Array for the affine layer inverse

16 : for i ∈ [0..8) do

17 : ỹ[i] := z̃[i− 1 mod 8] + z̃[i− 3 mod 8] + z̃[i− 6 mod 8]

18 : ỹ[0] := ỹ[0] + (1F2m − Mtag) · (Mkey ·∆+ (1F2m − Mkey))

19 : ỹ[2] := ỹ[2] + (1F2m − Mtag) · (Mkey ·∆+ (1F2m − Mkey))

20 : y[4Nstj + 4c+ r] := ByteCombine(ỹ[0..7];λ)

21 : return y ∈ FSenc

2λ
// F28 -inverse outputs for the R S-box layers

Fig. 7.3: Transforming witness or VOLE values into F28 -inverse outputs for the encryption routine
in EM mode.

Top of Section 7 49 Table of Contents

Input

out {0, 1}λ FAEST OWF output block.

x {0, 1}λ(R+1) expanded key values.

w F`2 ∪ {⊥} extended witness values, or ⊥ if Mkey = 1.

v F`2λ ∪ {⊥} extended witness VOLE tags, or ⊥ if Mkey = 1.

Mkey {0, 1} 1 if computing VOLE keys (for verifier), 0 otherwise.

q F`2λ ∪ {⊥} extended Witness VOLE keys, or ⊥ if Mkey = 0.

∆ F2λ ∪ {⊥} global VOLE key if Mkey = 1, ⊥ otherwise.

FAEST.Rijndael-EM.EncCstrnts(out,x,w,v, Mkey, q,∆; param, paramOWF)

1 : if Mkey = 0 // If computing wire values and tags

2 : new x ∈ F32Nst(R+1)
2 // To hold the lifted bits of the public AES expanded key

3 : for i ∈ [0..32Nst(R+ 1)) do

4 : x[i] := ToField(x[i]; 1) // Lifting the bits

5 : new wout ∈ Fλ2 ,vout ∈ Fλ2λ // Holding values and VOLE tags for AES output

6 : for i ∈ [0..λ) do wout[i] = ToField(out[i]; 1) + w[i] // Embedding AES output values

7 : vout[0..λ) := v[0..λ) // Copying AES output tags from witness tags

8 : s := EncFwd(1,w,x, 0, 0,⊥; param, paramOWF) // Inverse inputs

9 : vs := EncFwd(λ,v,0, Mtag = 1, 0,⊥; param, paramOWF) // VOLE tags of inverse inputs

10 : s̄ := EncBkwd(1,w,x,wout, 0, 0,⊥; param, paramOWF) // Inverse outputs

11 : vs̄ := EncBkwd(λ,v,0,vout, Mtag = 1, 0,⊥; param, paramOWF) // Tags of inverse outputs

12 : for j ∈ [0..Senc) do // Iterating S-box-wise

13 : A0,j := vs[j] · vs̄[j]

14 : A1,j := (s[j] + vs[j]) · (s̄[j] + vs̄[j])− 1F
28
−A0,j

15 : return (A0,0, . . . , A0,Senc−1) ∈ FSenc

2λ
, (A1,0, . . . , A1,Senc−1) ∈ FSenc

2λ

16 : else // If computing tag keys

17 : new x ∈ F32Nst(R+1)

2λ
// To hold the lifted bits of the public AES expanded key

18 : for i ∈ [0..32Nst(R+ 1)) do

19 : x[i] := ToField(x[i];λ) ·∆ // Lifting the bits and multiplying with VOLE key

20 : new qout ∈ Fλ2λ // Holding VOLE keys for AES output

21 : for i ∈ [0..λ) do qout[i] := ToField(out[i];λ) ·∆+ q[i]

22 : qs := EncFwd(λ, q,x, 0, Mkey = 1,∆; param, paramOWF) // VOLE keys of inverse inputs

23 : qs̄ := EncBkwd(λ, q,x, qout, 0, Mkey = 1,∆; param, paramOWF) // Keys of inverse outputs

24 : for j ∈ [0..Senc) do // Iterating S-box-wise

25 : Bj := qs[j] · qs̄[j]−∆ ·∆ // ∆ is VOLE key of expected result s · s̄ = 1

26 : return (B0, . . . , BSenc−1) ∈ FSenc

2λ

Fig. 7.4: Deriving the constraint values for the AESλ encryption routine in EM variant.

Top of Section 7 50 Table of Contents

7.2.2 Rijndael-EM.EncBkwd Description. To compute the values for outputs of
the inversion operations in the S-boxes of the encryption routine, this algorithm se-
lects the ShiftRowsNst output bit values, their VOLE tags or their VOLE keys from z
and first removes the expanded key values, their VOLE tags or their VOLE keys read
from x. (In case it is computing values for the final layer of S-boxes, the values are
read from the output block values, VOLE tags or VOLE keys zout instead.) Undoing
the ShiftRowsNst operation (to work backwards towards the SubBytes operation) is
done in the calculation of the ird index, using the iout index, which ensures that the
correct “un-shifted” value is read, correcting for the addition shift performed by the
Rijndael algorithm when Nst = 8.

With the output of the S-box obtained, the F2-affine transformation is inverted
with bit-wise operations before combining the 8 elements into a single F28 (sub-)
field element and storing it in the return array.

7.2.3 Rijndael-EM.EncCstrnts Description. To derive a vector of Senc con-
straints values, this algorithm first embeds the AES expanded key values x as field
elements and computes the values and VOLE tags, or VOLE keys, for the AES
encryption output based on the OWF output block bits out and the values, tags
and keys of the OWF key k, stored in w[i], v[0..λ) and q[0..λ) respectively. Then it
calls EncFwd and EncBkwd to derive the input and output values and VOLE tags,
or VOLE keys, for each of the S-boxes in the encryption routine. Using these, it
computes the A0 and A1 values, or B values, for each of the S-boxes, and returns
them.

7.3 Proving and Verifying Rijndael-EM Constraints

The Rijndael-EM.EMProve (Fig. 7.5) and Rijndael-EM.EMVerify (Fig. 7.6) algorithms
perform the operations of the QuickSilver zero-knowledge proof system instantiated
for the Even-Mansour OWF construction based on the AES algorithm.

EMProve. Given the parameters param, paramOWF, the extended witness bits w, the
VOLE masks u, the VOLE tags V, the FAEST AES-EM public key pk, and the
QuickSilver challenge chall, this algorithm derives the QuickSilver response (ã, b̃).

EMVerify. Given the parameters param, paramOWF, the masked witness bits d, the
VOLE keys Q, the QuickSilver challenge chall2, the VOLE challenge chall3, part of
the QuickSilver response (ã), and the FAEST AES-EM public key pk, this algorithm
recomputes the b̃ part of the QuickSilver response.

7.3.1 EMProve Description In order to compute the QuickSilver response (ã, b̃),
this algorithm first embeds the witness and VOLE tag bit-strings w and V to F2 and
F2λ respectively. It then computes the key expansion based on the publicly known
AES key, derived from the FAEST public key input block in.

It then derives the constraint values a0 and a1 by calling Rijndael-EM.EncCstrnts
and computes the zero-knowledge masking values u∗ and v∗ using the last λ elements
of the VOLE masks u and tags V. Finally, it calls the ZKHash algorithm with the
challenge chall on a1‖u∗ and a0‖v∗ to compute the response (ã, b̃).

Top of Section 7 51 Table of Contents

Inputs

w {0, 1}` extended witness values, as bits.

u {0, 1}λ masking values for the QuickSilver response, as bits.

V {0, 1}(`+λ)×λ VOLE tags of the masking values, as bit-strings.

pk {0, 1}2·λ FAEST public key

chall {0, 1}3λ+64 ZKHash challenge to compute the QuickSilver response (ã, b̃).

FAEST.Rijndael-EM.EMProve(w,u,V, pk, chall; param, paramOWF)

1 : Parse pk = (in,out) ∈ {0, 1}λ × {0, 1}λ // decompose public key

2 : for i ∈ [0..`) do w[i] := ToField(w[i]; 1)

3 : for i ∈ [0..`+ λ) do v[i] := ToField(V|i;λ)

4 : x := KeyExpansion(in; paramOWF) // Compute key expansion, 32Nst(R+ 1) bits

5 : new a0,a1 ∈ F≤C
2λ

6 : (a0,a1) := Rijndael-EM.EncCstrnts(out,x,w,v, Mkey = 0,⊥,⊥; param, paramOWF)

7 : for i ∈ [`..`+ λ) do

8 : u[i− `] := ToField(u[i], λ)

9 : u∗ :=
∑
i∈[0..λ) u[i]αiλ, v∗ :=

∑
i∈[0..λ) v[`+ i]αiλ // Where αλ ∈ F2λ

10 : ã := ZKHash(chall, (a1‖u∗))
11 : b̃ := ZKHash(chall, (a0‖v∗))
12 : return (ã, b̃)

Fig. 7.5: Proof of AES constraints in the EM variant

7.3.2 EMVerify Description Just as EMProve, the algorithm is very similar to
AESVerify. The algorithm first reconstructs the VOLE and QuickSilver challenge
∆. Next, the algorithm adds d to the appropriate columns of Qi depending on the
challenge for the VOLE instance i. Since all VOLE key tags (i.e. all Qi) have been
corrected to be tags for the same secret (u) in the calling function, this will correct
the key tags to be for the AES witness committed in d. After this correction, all rows
now encode the correct VOLE key tags of the verification operation, so we lift all
rows Q|i using ToField to the field used for verification computations of QuickSilver.

After this, the AES or Rijndael operations are applied as follows: We first use
KeyExpansion to compute the bits of the public expanded key. We then run EncCstrnts
to recompute b, the MAC keys of the constraints.

Before compressing the tags, we have to reconstruct the VOLE key tag from
q for the u∗ and v∗ values that are used to make ã, b̃ zero-knowledge. This tag is
denoted as q∗. Then, all these VOLE instances, denoted as b‖q∗, are linearly hashed
using ZKHash using the ZKHash challenge chall2. This yields a final VOLE key tag
q̃ in F2λ , and we return the value q̃ − ã∆ which equals b̃ if the proof was indeed
correct.

Top of Section 7 52 Table of Contents

Inputs

d {0, 1}` masked extended witness, as bits.

Q {0, 1}(`+λ)×λ VOLE keys of the masking values u, as bit-strings.

ã F2λ ZKHash of constraints values

chall2 {0, 1}3λ+64 ZKHash challenge to compute q̃.

chall3 {0, 1}λ The VOLE challenge to correct Q with d according to ∆.

pk {0, 1}2·λ The public key consisting of AES EM inputs and outputs.

FAEST.Rijndael-EM.EMVerify(d,Q, chall2, chall3, ã, pk; param, paramOWF)

1 : Parse pk = (in,out) ∈ {0, 1}λ × {0, 1}λ // decompose public key

2 : ∆ := ToField(chall3;λ) // reconstruct VOLE and MAC challenge

3 : Write Q :=
[
Q0 · · ·Qτ−1

]
// Q0, . . . ,Qτ0−1 have k0 columns, others k1

4 : for i ∈ [0..τ) do // make commitments to witness

5 : b := 0 if i < τ0 else 1

6 : (δ0, . . . , δkb−1) := ChalDec(chall3, i; param)

7 : Write Qi = [qi,0, . . . ,qi,kb−1] // consider kb columns separately

8 : for j ∈ [0, kb) do

9 : qi,j [0..`− 1] := qi,j [0..`− 1]⊕ δj · d // perform column-wise

10 : for i ∈ [0..`+ λ) do // create global MACs

11 : q[i] := ToField(Q|i;λ) // create VOLE keys row-wise (i.e. transpose Q)

12 : new b ∈ F≤C
2λ

13 : x := KeyExpansion(in; paramOWF) // Compute key expansion, 32Nst(R+ 1) bits

14 : b = EncCstrnts(out,x,⊥,⊥, Mkey = 1, q[0..`),∆; param, paramOWF)

15 : q∗ :=
∑
i∈[0..λ) q[`+ i]αiλ // VOLE key for u∗ and v∗ in AESProve; αλ ∈ F2λ

16 : q̃ := ZKHash(chall2, (b‖q∗))
17 : return q̃ − ã ·∆

Fig. 7.6: Verification of AES constraints for the EM variant

Top of Section 7 53 Table of Contents

8 The FAEST Signature Scheme

In this section we present the principal algorithms of the FAEST signature scheme:

– Section 8.1: Key Generation algorithm FAEST.KeyGen in Figure 8.1

– Section 8.2: Signing algorithm FAEST.Sign in Figure 8.2

– Section 8.3: Verification algorithm FAEST.Verify in Figure 8.3.

8.1 Key Generation

The key generation algorithm takes as input one of the parameter sets described
in Table 2.1 via param, paramOWF, which fixes the security parameter λ, the output
length 128 · β to 128 (i.e., β = 1) if λ = 128 and to 256 if λ ∈ {192, 256}, and the
OWF.

The algorithm, given in Figure 8.1, is almost the same for all parameter sets.
First, it samples x← {0, 1}β·128 and k← {0, 1}λ until one pair (x, k) is found such
that no occurrence of the AES S-box—in either SubBytes or SubWord in case of
FAEST, or just in SubBytes in case FAEST-EM—receives 0 as input, by checking
that ZeroInpSB = 0. If ZeroInpSB = 1, then it sets sk = k and pk = (x,y), and
returns (sk, pk). Otherwise, it repeats the process until a key k with this property is
found. A discussion on the implications of excluding secret keys with a 0 state byte
for any SubBytes or SubWord is given in Section 10.3.

8.2 Signing

The FAEST signature algorithm Sign is given in Figure 8.2. It uses some of the
procedures described in the previous section. The challenges chall1, chall2, chall3 for
the signing are obtained using random oracle H2 by generating outputs of different
length. The signing algorithm runs in 4 phases, defined by the generation of the
challenges.

In phase 1, the signer compresses the public key pk and the message msg into
a string µ. This string, together with the secret key sk and unique randomness ρ is
then used to derive the randomness r which seeds the VOLE generation. After this,
the signer commits to the VOLEs. For this, it runs VOLECommit on input r and
gets as a response the commitment hcom of all VOLE instances (or rather the vector
commitments generating the VOLE instances), the τ full decommitments decomi,
the τ − 1 correction values c1, . . . , cτ−1 as well as the VOLE secrets u and VOLE
MAC tags V. Here, ci corrects the ith VOLE instance to have the same secret
u as the 0th VOLE instance. Finally in this phase, the signer generates the first
challenge chall1 by hashing together the (hashed) message µ and the public outputs
hcom, c1, . . . , cτ−1 of VOLECommit, returning a bit string chall1 of length 5λ+ 64.

In phase 2, the signer prepares ũ, Ṽ for the VOLE consistency check using the
procedure VOLEHash on input (chall1,u) and (chall1,V), respectively, and hashes Ṽ
(for brevity). It then generates the extended AES witness w and creates d, which is
the witness w one-time padded using u, thereby committing the signer in the proof
to the witness. Finally in this phase, the signer will hash ũ, hV as well as d together
with chall1 to obtain the second challenge chall2 ∈ {0, 1}3λ+64.

In phase 3, the signer computes the QuickSilver proof (ã, b̃) using AESProve.
The proof algorithm uses u,V as input VOLEs to generate the proof, as well as the
witness w and the inputs and outputs of the AES instances. Here, the QuickSilver

Top of Section 8 54 Table of Contents

FAEST.KeyGen(param, paramOWF)

1 : ZeroInpSB := 0

2 : while ZeroInpSB = 0 do

3 : x← {0, 1}β·128

4 : k← {0, 1}λ

5 : y := Fk(x)

6 : // In case the OWF is AES

7 : if no SubBytes or SubWord has an input with a {00} byte then ZeroInpSB← 1

8 : // In case the OWF is EM-AES

9 : if no SubBytes has an input with a {00} byte then ZeroInpSB← 1

10 : sk := k

11 : pk := (x,y)

12 : return (sk, pk)

Fig. 8.1: FAEST key generation algorithm

FAEST.Sign(msg, sk, pk; param, paramOWF)

1 : ρ← {0, 1}λ // Signature randomness — for deterministic signing, set ρ := 0λ

2 : µ := H1(pk‖msg)

3 : (r, iv) := H3(sk‖µ‖ρ) // r ∈ {0, 1}λ, iv ∈ {0, 1}128

4 : // Commitment and VOLE Derandomization

5 : (hcom, decom0, . . . , decomτ−1, c1, . . . , cτ−1,u,V) := FAEST.VOLECommit(r, iv, `+ 2λ+B; param)

6 : chall1 := H1
2(µ‖hcom‖c1‖ . . . ‖cτ−1‖iv; 5λ+ 64)

7 : // VOLE consistency check and witness commitment

8 : ũ := VOLEHash(chall1,u) ∈ {0, 1}λ+B

9 : Ṽ := VOLEHash(chall1,V) ∈ {0, 1}(λ+B)×λ // hash column-wise

10 : hV := H1(Ṽ) // hash in column-major order

11 : w := AES.ExtendWitness(sk, in; param, paramOWF) ∈ {0, 1}` // Extend witness with S-Box outputs

12 : d := w ⊕ u[0..`) // Mask extended witness

13 : chall2 := H2
2(chall1‖ũ‖hV ‖d; 3λ+ 64)

14 : // AES proof

15 : u := u[0..`+λ)

16 : V := V[0..`+λ) // drop last λ+B rows (impl. may transpose to row-major order here)

17 : (ã, b̃) := FAEST.AES.AESProve(w,u,V, pk, chall2; param, paramOWF)

18 : chall3 := H3
2(chall2‖ã‖b̃;λ)

19 : // Build VOLE challenge and open Vector Commitments

20 : for i ∈ [0..τ) do

21 : si := ChalDec(chall3, i; param)

22 : (pdecomi) := VC.Open(decomi, si)

23 : return σ := ((ci)i∈[1..τ), ũ,d, ã, (pdecomi)i∈[0..τ), chall3, iv)

Fig. 8.2: FAEST signing algorithm. For EM variant, replace AES.ExtendWitness and AES.AESProve
by Rijndael-EM.ExtendWitness and Rijndael-EM.EMProve

Top of Section 8 55 Table of Contents

proof consists of a VOLE tag ã and VOLE secret b̃, compressed using the challenge
chall2. chall2 as well as the QuickSilver proof are then used to generate the last
challenge chall3 ∈ {0, 1}λ. This challenge determines which index of each of the τ
vector commitments will not be opened.

In phase 4, the signer for each vector commitment opens all except one index
(namely si) as specified by the challenge chall3. To do so, it generates the partial
decommitment pdecomi for each of the τ vector commitments. Finally, the signer
generates the signature σ which consists of:

– The τ − 1 correction strings c1, . . . , cτ−1.
– The hashed VOLE secret ũ. This is used in the VOLE consistency check later.
– The commitment d to the witness.
– The QuickSilver proof part ã.
– The partial decommitments pdecomi for each of the τ vector commitment in-

stances, opening all positions except si.
– The last challenge chall3.
– The initialization vector iv.

8.3 Verification

The FAEST verification algorithm Verify is given in Figure 8.3. Like the signing
algorithm it can be separated into 4 phases. Initially, the verifier parses the signature
σ into its individual components (mentioned in the previous subsection). If any of
these parts are missing or σ is not well-formed, then verification aborts. Next, the
verifier recomputes µ and extracts the AES inputs and outputs in,out from pk.

In phase 2, the verifier computes the VOLE key tags based on chall3 and the par-
tial openings pdecomi for all τ VOLE instances using the algorithm VOLEReconstruct.
This generates all the key tags Q′i for the VOLE instances. VOLEReconstruct also
recomputes a hash hcom from the partial decommitments, which is the hash of all
vector commitments. This hcom allows the verifier to recompute the first challenge
chall1.

In phase 3, the verifier adjusts all VOLE key tags to be for the same secret (u in
the Sign algorithm) instead of different secrets. This is done by adding ci to VOLE in-
stance i where we add ci iff the secret is present in the respective column of Q′i based
on Proposition 5 (observe that VOLEReconstruct internally calls ConvertToVOLE to
generate the Q′i key tags). This leaves Q′0 untouched, as it already has the correct
secret. The verifier then wants to use the VOLEHash of Q0, . . . ,Qτ−1 using challenge
chall1 to recompute the hash hV of the VOLE MAC tags. To achieve this, the ver-
ifier corrects the VOLEHash Q̃ by the VOLEHash ũ (as VOLEHash is linear), where
it adds ũ to a hashed column of Q′i depending on the individual VOLE challenges
(i.e. depending if the secret is present in the specific column of the VOLE instance i
or not). hV is in turn used by the verifier to reconstruct the second challenge chall2.

Finally, in phase 4 the verifier has reconstructed all VOLE key tags in Q0, . . . ,Qτ−1

for the same VOLE secrets, based on correct openings of the vector commitments.
It then calls AESVerify to obtain the QuickSilver VOLE MAC b̃ based on the VOLE
secret ã as outlined in Section 6.4. It uses this to compute chall′3. If this disagrees
with chall3 of σ then it rejects the signature, otherwise it accepts it.

Top of Section 8 56 Table of Contents

FAEST.Verify(msg, pk, σ; param, paramOWF)

1 : Parse σ = ((ci)i∈[1..τ), ũ,d, ã, (pdecomi)i∈[0..τ), chall3, iv)

2 : µ := H1(pk‖msg)

3 : // Reconstruct VOLEs and check commitment

4 : (hcom,Q
′
0, . . . ,Q

′
τ−1) := FAEST.VOLEReconstruct(chall3, (pdecomi)i∈[0..τ), iv, `+ 2λ+B; param)

5 : chall1 := H1
2(µ‖hcom‖c1‖ . . . ‖cτ−1iv; 5λ+ 64)

6 : // Apply the VOLE correction values and check consistency

7 : Q0 := Q′0

8 : for i ∈ [0..τ) do

9 : b := 0 if i < τ0 else 1

10 : (δ0, . . . , δkb−1) := ChalDec(chall3, i; param)

11 : D̃i := [δ0 · ũ · · · δkb−1 · ũ] ∈ {0, 1}(λ+B)×kb

12 : if i > 0

13 : Qi := Q′i ⊕
[
δ0 · ci · · · δkb−1 · ci

]
14 : Denote Q :=

[
Q0 · · ·Qτ−1

]
15 : Q̃ := VOLEHash(chall1,Q) ∈ {0, 1}(λ+B)×λ

16 : hV := H1(Q̃⊕ [D̃0 · · · D̃τ−1]) // Hash in column-major order

17 : chall2 := H2
2(chall1‖ũ‖hV ‖d; 3λ+ 64)

18 : // Compute AES consistency values

19 : b̃ := FAEST.AES.AESVerify(d,Q|[0..`+λ), chall2, chall3, ã, pk; param, paramOWF)

20 : Compute chall′3 := H3
2(chall2‖ã‖b̃;λ)

21 : return true if chall3 = chall′3 else false

Fig. 8.3: FAEST verification algorithm. For EM variant, replace AES.AESVerify by
Rijndael-EM.EMVerify

Top of Section 8 57 Table of Contents

9 Performance Analysis

We provide two implementations of FAEST as part of the proposal. The first is a
reference implementation in standard C, while the second is an architecture-specific
implementation with optimizations aimed at x86-64 architectures with the AVX2
and AES-NI instruction set extensions, as commonly seen in Intel and AMD CPUs.
Note that the “optimized implementation” required by NIST is identical to the refer-
ence implementation. Both implementations were built using the eXtended Keccak
Code Package (XKCP) and OpenSSL libraries.

We used a few techniques worth mentioning in the x86-64 implementation. For
converting V and Q from column to row major order, we used an extension of Ek-
lundh’s matrix transposition algorithm [TE76]. Our use of AES as a PRG is limited
by only generating a few blocks of output for each key, and most implementations
of the AES key schedule are relatively inefficient in this setting. To improve the per-
formance of our PRGs, we adapted the approach of Gueron et al. [GLNP15] to run
four AES key schedules in parallel with vectorization. Finally, for ConvertToVOLE
we adapted an efficient algorithm for parity checking Hamming codes [LLH20].11

Benchmarking Setup. We measured the performance of both implementations using
a single core of a consumer notebook with an AMD Ryzen 7 5800H processor, with
a base clock speed of 3.2 GHz and 16 GiB memory. Simultaneous Multi-Threading
was enabled. The computer was running Linux 6.1.30, and the implementations were
built with GCC 12.2.1.

Performance. Table 9.1 shows the performance of the AVX2 implementation, while
Table 9.2 shows the reference implementation. Runtimes of the respective algorithms
are given in milliseconds.

11The paper presents the algorithm as an encoding algorithm for Hadamard codes, the dual of
Hamming codes. The transpose of this algorithm calculates the parity for a Hamming code.

Top of Section 9 58 Table of Contents

Scheme
Runtimes in ms Sizes in B

KeyGen Sign Verify sk pk Signature

FAEST-128s 0.001 8.096 8.097 32 32 5 006

FAEST-128f 0.001 0.874 0.869 32 32 6 336

FAEST-192s 0.002 19.178 19.311 56 64 12 744

FAEST-192f 0.002 1.957 1.962 56 64 16 792

FAEST-256s 0.003 26.652 26.763 64 64 22 100

FAEST-256f 0.003 3.104 3.104 64 64 28 400

FAEST-EM-128s 0.001 8.086 8.046 32 32 4 566

FAEST-EM-128f 0.001 0.855 0.857 32 32 5 696

FAEST-EM-192s 0.001 18.460 18.520 48 48 10 824

FAEST-EM-192f 0.001 1.869 1.869 48 48 13 912

FAEST-EM-256s 0.003 25.646 25.872 64 64 20 956

FAEST-EM-256f 0.003 3.035 3.029 64 64 26 736

Table 9.1: Benchmark results for the architecture specific implementation for x86-64 with AVX2.’

Scheme
Runtimes in ms Sizes in B

KeyGen Sign Verify sk pk Signature

FAEST-128s 0.029 57.372 54.685 32 32 5 006

FAEST-128f 0.029 10.595 8.688 32 32 6 336

FAEST-192s 0.133 140.986 130.200 56 64 12 744

FAEST-192f 0.132 29.459 22.125 56 64 16 792

FAEST-256s 0.218 192.760 172.761 64 64 22 100

FAEST-256f 0.219 53.338 38.640 64 64 28 400

FAEST-EM-128s 0.025 55.444 53.514 32 32 4 566

FAEST-EM-128f 0.025 9.271 8.195 32 32 5 696

FAEST-EM-192s 0.068 124.585 115.081 48 48 10 824

FAEST-EM-192f 0.070 21.848 18.476 48 48 13 912

FAEST-EM-256s 0.202 181.046 166.831 64 64 20 956

FAEST-EM-256f 0.210 45.798 37.475 64 64 26 736

Table 9.2: Benchmark results for the reference implementation.’

Top of Section 9 59 Table of Contents

10 Security Evaluation

In this section, we evaluate the security of FAEST. In Section 10.1, we present a
proof of security in the random oracle model, and provide evidence for security
in the quantum-accessible random oracle model. In Section 10.2, we analyze the
security of FAEST with respect to known attacks. In Section 10.3, we perform a
thorough concrete analysis of the one-way functions based on AES whose security
FAEST relies on.

10.1 Provable Security

We prove security of FAEST when the hash functions H0, H1, H1
2, H2

2, H3
2 are modeled

as random oracles. The proof is an adaptation of the proof of [BBD+23]: It follows
the same reasoning, but uses concrete primitives, and not the abstract (compilation)
steps of [BBD+23], so we get tighter bounds than in [BBD+23].

The section proceeds as follows. In Section 10.1.1, we start by proving that
VOLECommit is extractable binding (for VOLE correlations) and that it is hiding,
in Lemmas 3 and 5, respectively. In Section 10.1.2, we prove classical security of
FAEST. Firstly, we prove existential unforgeability under key-only attacks (EUF-
KO) of FAEST in Theorem 1. This proof relies (in a non-black-box manner) on the
extractable binding property of VOLECommit, and mostly follows from the proof
of [BBD+23]. Essentially, this proof exploits the straightline extractability of random
oracles hashes to map adversarial executions to interactive executions, and implic-
itly relies on the round-by-round soundness of the underlying proof of knowledge,
cf. [BBD+23]. Secondly, we extend EUF-KO security to full existential unforgeability
under chosen message attacks (EUF-CMA) in Theorem 2. This proof handles signing
queries by programming the random oracle.

In Section 10.1.3, we discuss QROM security. We formulate a conjecture about
extractability of VOLECommit in the QROM, and then prove non-tight QROM se-
curity based on that conjecture. To that end we use a more modular (and less tight)
approach to prove EUF-KO in the QROM, Theorem 5, and generalize Theorem 2 to
the QROM in Theorem 3.

10.1.1 Security of Vector Commitments and VOLE Commitment We
first argue that commitments are binding, by showing that there is an extractor algo-
rithm that is allowed to observe random oracle queries, and will successfully extract
the adversary’s committed message with high probability. The analysis is similar
to [BBD+23, Sec. 3.1], with the main differences being that instead of analyzing the
vector commitments directly, we analyze the VOLECommit and VOLEReconstruct
algorithms which use them. Thus, we only show the binding property on the signer’s
VOLE matrices, rather than the original vectors committed using VC (even though
these are also still binding). By arguing security only for our specific construction,
we also avoid the security loss incurred by generic reductions in [BBD+23].

Lemma 3 (Extractable Binding of VOLE Commitment). Consider the fol-
lowing extractable binding game for (VOLECommit,VOLEReconstruct), a stateful ad-
versary A and a straightline extractor Ext:

1. hcom ← AH0,H1(commit)
2. (u∗i ,V

∗
i)i∈[0,τ) = Ext(L0,L1, hcom), where Lb is a set {(xi,Hb(xi))} of query-

response pairs from queries A made to the random oracle Hb.

Top of Section 10 60 Table of Contents

VOLEVerify(hcom, chall, (pdecomi)i∈[0..τ), iv, ˆ̀; param)

1 : (hcom,Q0, . . . ,Qτ−1) := VOLEReconstructH1(chall, (pdecomi)i∈[0..τ), iv, ˆ̀; param)

2 : return hcom 6= hcom or hcom = ⊥

Fig. 10.1: VOLECommit decommitment verification.

3. (chall, (pdecomi)i∈[0..τ))← AH0,H1(open)
4. For i ∈ [0..τ):

(a) (δi,0, . . . , δi,kb−1) := ChalDec(chall, i; param)
(b) ∆i := NumRec(kb, (δi,0, . . . , δi,kb−1))

5. (hcom,Q0, . . . ,Qτ−1) := VOLEReconstructH1(chall, (pdecomi)i∈[0..τ), iv, ˆ̀; param)
6. Output 0 (failure) if

(a) hcom = ⊥ or hcom 6= hcom (i.e., verifier rejects), or

(b) Qi = V∗i ⊕
[
δi,0 · u∗i · · · δi,kb · u∗i

]
, for all i ∈ [0, . . . , τ) (i.e., extraction cor-

rect).

7. Output 1 (success) otherwise.

Suppose A makes at most Q0, Q1 queries to the oracles H0,H1 respectively. More-
over, suppose that A checks if VOLEVerify(hcom, chall, (pdecomi)i∈[0..τ), iv, ˆ̀; param) =
1 for the purported decommitment, and otherwise outputs ⊥. Let Ext be the straight-
line extractor defined in the security proof. Then, the advantage of A in the above
game is at most

(Q0 + 1)2 + (Q1 + 1)2

22λ
.

Intuitively, the lemma asserts that extraction succeeds unless A cheats by break-
ing collision or preimage resistance of the random oracle, which gives the advantage
bound in the lemma. Note that A chooses the challenges ∆i, hence it can cheat in
the sense that only an opening for ∆i is “known” to A, i.e. the (extracted) commit-
ment cannot be opened for any other challenge than ∆i. However, as long as the
extractor extracts that VOLE correlation, this does not constitute a success for the
adversary — the adversary only wins if the extracted VOLE correlation disagrees
with the opened VOLE correlation.

Remark 1. The requirement that A checks its purported decommitment can be re-
moved by replacing a non-conforming adversary A′ with A where this check is added.
Due to this change, the maximal number of queries Q0 (resp. Q1) to H0 (resp. H1)
increases to at most Q0 +τN (resp. Q1 +τ+1). Thus, the advantage bound becomes

(Q0 + τN)2 + (Q1 + τ + 1)2

22λ

which for concrete security makes almost no difference, since Q0, Q1 � τN .

We use following lemma to simplify the proof of Lemma 3.

Lemma 4 (Random oracle graph game). Let H : {0, 1}∗ → Y be a random
oracle and consider following game with an adversary A. The game keeps track of
a directed graph G = (V,E), initially empty, and proceeds as follows: The adversary
can (repeatedly) query H at some x. Let H(x) = y.

Top of Section 10 61 Table of Contents

– If y ∈ V but there is no edge (x′, y) ∈ E, then the adversary wins. (Preimage)

– If an edge (x′, y) ∈ E exists with x′ 6= x, then the adversary wins. (Collision)

– Else, add nodes x and y to V and add an edge e = (x, y) from x to y to E.

Let A be an adversary which makes at most Q queries to H. Then the probability
that A wins is bounded by

Q2/ |Y| .

Proof of Lemma 4. The chances for A to win with a query to H (if it has not yet

won) are at most |V ||Y| . Namely, the conditions on no edge to y or an existing edge to

y separate V into two disjoint sets: Let V ′ be the set of nodes with no edges pointing
to them. Let V ′′ be the set of nodes with edges pointing to them (that is, images
under H). The adversary wins if a fresh query x yields an edge to a node y in V ′

(the case @x′ : (x′, y) ∈ E), or if x yields another edge to a node in V ′′ (the case
∃x′ : (x′, y) ∈ E ∧ x 6= x′). (The former is a preimage attack, the latter is a collision

attack.) Clearly, the chances that the former happens are |V
′|
|Y| and the chances that

the latter happens are |V
′′|
|Y| , and since V ′ and V ′′ are disjoint, the chances that either

happens is |V ||Y| .

Since the set V grows by at most 2 nodes per query, we can bound the success
probability of A by

Q∑
i=1

2 · (i− 1)

|Y|
≤ Q2

|Y|
.

Proof of Lemma 3. We define the straightline extractor Ext, by looking through the
lists of queries L0,L1 as follows.

1. Find a preimage (com0‖ . . . ‖comτ−1) of hcom under H1. If there is no unique
preimage, i.e., there are none or multiple preimages, immediately output ⊥.

2. For each i ∈ [0..τ):

(a) Find a preimage (comi,0, . . . , comi,Ni−1) of comi under H1, where Ni = N0 if
i < τ mod λ and N1 otherwise. If there is no unique preimage, i.e., there are
none or multiple preimages, immediately output ⊥.

(b) For each j ∈ [0..Ni), find sdi,j such that (sdi,j , comi,j) has a preimage of some
query to H0. If there is no such preimage, set sdi,j = ⊥. If there are multiple
preimages, immediately output ⊥.

Then, for each of the i ∈ [0, τ) VOLEs, Ext distinguishes following cases:

– Case 1 (All preimages found): If Ext found all preimages (sdi,j)j∈[0,N) for i, then
it computes V∗i and u′i honestly (i.e., via ConvertToVOLE) and sets ∆∗i = ⊥.

– Case 2 (Missing one preimage): If a single preimage was not found, say sdi,j∗ = ⊥,
then Ext sets ∆∗i = j∗ and, as in VOLEReconstruct, computes (u∗i ,qi,0, . . . ,

qi,kb−1) = ConvertToVOLE(⊥, sdi,1⊕∆∗i , . . . , sdi,(N−1)⊕∆∗i , iv; ˆ̀) and lets Qi = (qi,0,

. . . ,qi,kb−1). With that, Ext defines V∗i = Qi ⊕
[
δi,0 · u∗i · · · δi,kb · u∗i

]
, for i ∈

[0, τ).

– Case 3 (Missing multiple preimages): If two or more preimages were not found,
say sdi,j∗1 = ⊥ = sdi,j∗2 for j∗1 6= j∗2 , then Ext outputs ⊥, i.e., extraction fails.

Top of Section 10 62 Table of Contents

This yields the output (u∗i ,V
∗
i)i∈[0,τ) of Ext. While not part of its output, we

make use of the bad challenges (∆∗i)i∈[0,τ) found during extraction later. Finally, for
reasons which are explained later, we add the following actions to Ext if extraction
failed:

– If extraction failed, since the preimage for hcom (resp., some preimage for comi)
was missing, in step 1 (resp. step 2), query H1(hcom) (resp., pick an arbitrary,
say random, comi without preimage and query H1(comi)).

– If extraction failed since more than one preimage for some comi,j was missing,
in step 2, pick an arbitrary, say random, comi,j without preimage and query it
at H0(comi,j).

Note that the cases are mutually exclusive, i.e., Ext will make at most one query to
either H1 or H0.

To analyse Ext, we consider the (graph from) the game from Lemma 4 and define
by Fail the (failure) event that, during the extractable binding game, a preimage
attack or a collision attack succeeded in the graph for either H′′0 or H1; here, we
write H0(x) = (H′0(x),H′′0(x)), i.e., we consider preimage and collision attacks w.r.t.
to the second component of H0 only. Note that since the second component H′′0 is
used for the commitments comi,j to sdi,j , considering H′′0 instead of H0 is necessary.

Consider the whole binding game as an adversary A′ to the random oracle graph
game in Lemma 4, where only the subroutine A of A′ makes fresh random oracle
queries. Observe that if the bad event Fail occurs, then if A′ wins Lemma 4. This
holds because, either the adversary finds a random oracle collision, or it finds a
preimage for a value x which Ext could not extract. To cover the latter case in the
random oracle game of Lemma 4, Ext makes a additional query H0(x) or H1(x)
which adds x as a node to the random oracle game, so that if the adversary finds
the missing preimage of x, then the game aborts.

As a consequence, failing to look up hcom, comi, or comi,j can trigger an extra
query to H1 or to H0 by Ext. By Lemma 4 and a union bound, we therefore find

Pr[Fail] ≤ ((Q0 + 1)2 + (Q1 + 1)2)/22λ ≤ ((Q0 + 1)2 + (Q1 + 1)2)/22λ.

In the following, we analyze the extraction conditioned on ¬Fail, i.e., whenever
the extractor does not know a preimage the game will not encounter one (either
due to a query of A or during VOLEReconstruct), and likewise, there will never be
multiple preimages. We observe the following:

– comi,j uniquely defines sdi,j .
12,13

– hcom uniquely defines (com0‖ . . . ‖comτ−1).

– comi uniquely defines (comi,0, . . . , comi,Ni−1) for i ∈ [0, τ).

Thus, it is only possible for A to open hcom successfully (i.e., hcom = hcom 6= ⊥) if

– Whenever ∆∗i = ⊥, i.e., comi could be fully extracted, then

Qi = V∗i ⊕
[
δi,0 · u∗i · · · δi,kb · u∗i

]
.

12If a preimage x exists under H′′0 , it is unique and sdi,j = H′0(x) by definition.
13Note that attacks on the GGM tree, i.e., on PRG, are not possible here, as the GGM tree is

only used to compress the decommitment for VC.Reconstruct. The checks and extraction rely only
on (sdj , comj) = H0(kdj), in the notation of VC.Reconstruct.

Top of Section 10 63 Table of Contents

This can be seen as follows: By the condition ¬Fail, the reconstructed seeds sd′i,j
in VOLEReconstruct coincide with the (extracted) seeds sdi,j⊕∆i for j ∈ [0, N),
except that sd′i,j = ⊥. Proposition 5 asserts that in this case, the equality Qi =

V∗i ⊕
[
δi,0 · u∗i · · · δi,kb · u∗i

]
holds, as required.

– Whenever ∆∗i 6= ⊥, the choice ∆i of A is ∆∗i . Otherwise, A would lose: If ∆∗i 6= ⊥,
then at least one commitment comi,j could not be extracted, hence this challenge
must be used byA otherwise it could not successfully decommit (due to condition
¬Fail). If challenge ∆∗i is used, then by condition ¬Fail and Proposition 5, we

again find that the equality Qi = V∗i ⊕
[
δi,0 · u∗i · · · δi,kb · u∗i

]
holds, as required.

Thus, we have shown that if Fail does not occur, extraction always succeeds. This
concludes the proof.

Next, we show that VOLECommit is hiding. To do this, we model our use of
random IVs in PRGs with the following multi-target security game. The batch size L
denotes the number of times the PRG is used with the same IV, while the number of
queries denotes the number of independent IVs used. In the AES-CTR construction
we use, increasing L degrades security by a factor of up to L, while increasing Q
does not lead to any practical loss.

Definition 6 (IV-based PRG and multi-challenge security). Let PRGm : {0, 1}λ×
{0, 1}128 → {0, 1}m be deterministic polynomial-time algorithm. Let A be a Q-query
L-batch adversary in the following game:

– For i ∈ [1, Q] sample ivi ← {0, 1}128.

• For j ∈ [1, L] sample rij ← {0, 1}λ

∗ Compute sij = PRGm(rij , iv
i)

– Sample b← {0, 1}
• If b = 0, set tij = sij for all i, j.

• If b = 0, set tij ← {0, 1}m for all i, j.

– b′ ← A((ivi, (tij)j∈[1,L])i∈[1,Q]).
– Output 1 (win) if b = b′, else 0 (lose).

Let p be the probability that A wins the game. The advantage AdvPRGPRGm
A [Q,M]

of Q-query L-batch adversary A against the PRG security is defined as

AdvPRGPRGm
A [Q,L] = 2p− 1.

Remark 2. By a standard hybrid argument, any 1-query 1-batch IV-based PRG PRG
is Q-query L-batch secure with AdvPRGPRG[Q,L] ≤ QL · AdvPRGPRG[1, 1].

Lemma 5 (VOLECommit is multi-hiding). Consider the following multi-hiding
experiment for VOLECommit and a Q-query adversary A, defined for some arbitrary
ˆ̀, param.

1. Sample b∗ ← {0, 1}
2. For j ∈ [1, Q]:

– rj ← {0, 1}λ, ivj ← {0, 1}128

– (hjcom, (decom
j
i)i∈[0,τ), (c

j
i)i∈[1,τ),u

j ,Vj) := VOLECommit(rj , ivj , ˆ̀; param)

– challj3 ← {0, 1}λ

– For i ∈ [0..τ), let sji := ChalDec(challj3, i; param).

Top of Section 10 64 Table of Contents

– For i ∈ [0..τ), let (pdecomj
i) := VC.Open(decomj

i , s
j
i)

– Define (uj , cj1, . . . , c
j
τ−1) =

{
(uj , cj1, . . . , c

j
τ−1) if b∗ = 0

random from (Fˆ̀
2)τ if b∗ = 1

3. b← A((uj , (pdecomj
i)i∈[0..τ), chall

j , hjcom, c
j
1)j∈[1,N])

4. Output 1 (success) if b = b∗. Else output 0 (failure).

Write PRGlen(s) = PRG(s; len). The advantage of A in the above game is at most

AdvHideVOLECommit
A [Q] ≤ AdvPRGPRGτλ [Q, 1] + k0 · AdvPRGPRG2λ [Q, τ]

+ AdvPRGH0 [Q, τ] + AdvPRGPRGˆ̀[Q, τ]

The same holds against quantum adversaries, in which case the advantage terms are
with respect to quantum adversaries.

Note that we can sample the challenges (challj3)j∈[1,Q] before committing without
changing the adversary’s view. Hence, all decommitment indices for all VC commit-
ments are known at commitment time. That is, we only assert selective security.

Proof. We define a sequence of hybrid experiments. For simplicity, we describe the
reduction for Q = 1 challenges. Since all VOLECommit instances are independent, it
is straightforward to generalize it to Q > 1.

First, we replace the τλ-bit PRG output (r0‖ . . . ‖rτ−1) := PRG(r; τλ) in line 1
of VOLECommit by sampling true randomness (r0‖ . . . ‖rτ−1)← {0, 1}τλ. Note that
we have an additional iv in our definition of PRG, so the reduction will first receive
the PRG challenge (iv, s). Then, it uses s in place of (r0‖ . . . ‖rτ−1) and iv for the
remainder of the computation.

Next, we modify each of the VC instances used in VOLECommit one by one. For
each instance, we first rely on the GGM construction of a puncturable PRF from a
length-doubling PRG, which allows us to successively replace PRG calls along the
path of ∆i to the root by truly random outputs. After logNi ≤ k0 hybrid steps,
the leaf seeds kij are replaced with random values. Next, using that H0 is a PRG,
we can replace the single hidden sdj value with a random seed. Again, we receive
an iv as part of the challenge during the reduction, and use that iv in computation.
Finally, we replace the ˆ̀-bit PRG output of sdj , computed in ConvertToVOLE, with
a random string, with the same arguments as before.

After repeating these steps for each of the τ VC instances, every ui value com-
puted in VOLECommit is now uniformly random. Hence, u as well as c1, . . . , cτ−1

are uniformly random (independent of the commitments), and no adversary can win
the game with advantage better than 1/2. As described, we sequentially replace the
τ instances of VC commitments in VOLECommit. However, using the multi-challenge
PRG property, this can be done in parallel. Similarly, the reduction can handle Q
instances of VOLECommit in parallel. This yields the advantage terms.

Observing that we did not make use of A’s structure in any way yields the
post-quantum security statement.

10.1.2 Security of the Signature Scheme. Building on the previous analysis,
we now argue security of the overall signature scheme. We first consider EUF-KO
security, that is, a key-only attack where the adversary must output a forgery given
only the public key. Then, we extend this to EUF-CMA security, where the adversary
also has access to a signing oracle.

Top of Section 10 65 Table of Contents

Theorem 1 (FAEST is EUF-KO). Let H0, H1 and H1
2,H

2
2,H

3
2 be modeled as random

oracles and (λ, τ, param, paramOWF) be parameters of the FAEST signature. Let A be
an adversary which, for simplicity, runs FAEST.Verify on its forgery before it outputs,
and outputs ⊥ if verification fails. Let Q0, Q1, Q2,i denote upper bounds on the
number of queries of A to H0, H1, Hi2, respectively, and let Q2 = Q2,1 +Q2,2 +Q2,3.
Then

AdvEUF-KO
A ≤ 3 · (Q0 +Q1 +Q2)2/22λ +Q2 · (εv + εzk + 2−λ) + AdvOWF

B . (4)

Remark 3. As in Lemma 3, the assumption that A checks if the forgery verifies
ensures that the game does not query undefined values of any random oracle for the
forgery verification. For a general A, we can always replace it by an A′ where the
check is added. This modification increases the number of random oracle queries to
at most Q0 + τN , Q1 + τ + 1, Q2,1 + 1, Q2,2 + 1, Q2,3 + 1 for H0, H1, H1

2, H2
2, H3

2

respectively. Since Q0, Q1, Q2 � τN , the effect on concrete security is minimal.

Before we argue security, we sketch how the extraction of the witness from an
adversary generating a signature works. Recall that the Fiat–Shamir transformation
turns interactive public-coin proof systems into non-interactive ones. However, se-
curity is in general not preserved, and stronger round-by-round security notions are
required [CCH+19, CMS19, BBD+23], because deriving the challenges via hashing
allows the malicious prover to “reset” the verifier to a previous state. In [BBD+23],
security was therefore argued in multiple steps:

1. The zero-knowledge proofs were designed in the VOLE-hybrid model and proven
round-by-round secure.

2. A VOLE functionality was realized in the n−1-out-of-n-OT-hybrid model (based
on the SoftSpokenVOLE protocol [Roy22]) and proven round-by-round secure.

3. A compiler for zero-knowledge proofs in the n−1-out-of-n-OT-hybrid model to a
CRS and/or RO model based on computationally hiding, straightline extractable
all-but-one vector commitments was designed and the security of the Fiat–Shamir
transformation of the compiled protocol was shown.

In FAEST, all of these steps happen in the proof of Theorem 1. For extracting a
forgery, we do these steps in reverse:

– Extract VOLECommit commitments, as in Lemma 3. Output ⊥ if extraction fails.

– Run the simulator for [Roy22] (SSOT), with minor adaptations, to obtain the
corrected VOLE. Output ⊥ if chall1 was “bad”.

– Run the ZK proof protocol. Output ⊥ if chall2 or chall3 were “bad”.

To bound the probability that extraction during forgery yields ⊥, we argue through
the existence of bad events, analogous to [BBD+23]. As the “protocol execution”
is driven through hash queries, we must take care of different threads of execu-
tion, i.e., the adversary may modify the hash query to obtain a different challenge.
In [BBD+23], this was handled explicitly through round-by-round knowledge. In
our proof, it is handled implicitly through the “bad events” FailVOLEHash, FailZKHash,
FailQS which correspond to round-by-round knowledge of these steps.

Proof. We argue via game hops.

Game G1: This is the real EUF-KO security game. As in the EUF-KO game, we
let sk, pk be the generated challenge secret and public key, respectively.

Top of Section 10 66 Table of Contents

Game G2: As the random oracle graph game in Lemma 4, this game now tracks
random oracle queries in a graph (separately for each of the oracles H′′0, H1, H1

3,
H2

3), and aborts (that is, immediately outputs 0) when the graph game (Lemma 4)
would be won. Here, H0(x) = (H′0(x),H′′0(x)), where H′′0(x) is the com part of H0,
cf. Lemma 3. Let Fail0, Fail1, Fail2,1, Fail2,2 denote the event that the graph for H′′0,
H1, H2,1, H2,2, goes bad, respectively. Observe that unless a bad event happens, G2

is identical to G1. Since the following games will change the (number of) random
oracle queries which are made throughout the game, we postpone to bound the
probabilities of the bad events to the end of the proof.

We denote by Qi and Q2,j a bound on the number of queries to Hi and Hj2,

respectively. In this game, we have Qi = Qi and Q2,j = Q2,j for i = 0, 1, j = 1, 2, 3.

Game G3: When µ‖hcom‖c1‖ . . . ‖cτ−1‖iv is queried to H1
2 by A, the game applies

the extractor Ext from Lemma 3 to hcom to extract the base VOLEs (ui,Vi)i∈[0,τ)

and remembers the result. If the adversary’s forgery is valid, but was not extracted
before, the game aborts.

Observe that, by the changes introduced in G2, if extraction failed for hcom, then
hcom cannot be part of a successful forgery. This holds, because FAEST.Verify checks
the decommitment, and exactly as in Lemma 3, the decommitment can only be valid
if a bad event Fail0 or Fail1 occurred. But due to the changes in G2, this leads to an
abort, contradicting a success of A. This shows that the change is just conceptual,
and we have

Pr[G2 = 1] = Pr[G3 = 1].

As in Lemma 3, the bound on random oracle queries of the game changes to

Q0 = Q0 +Q2,1 Q1 = Q1 +Q2,1.

because at most Q2,1 runs of Ext will be triggered, and at most one query to H0 or
H1 will be made by a (failing) run of Ext.

Game G4: When µ‖hcom‖c1‖ . . . ‖cτ−1‖iv is queried to H1
2 by A and extraction

succeeds (i.e., does not output ⊥, but (ui,Vi)i∈[0,τ)), the game samples chall1 from

{0, 1}5λ+64 and checks if the VOLE consistency check for u = u0 with purported
correction (c1, . . . , cτ−1) was bad, and aborts if that happens. We define and bound
the event for a bad consistency check in the following.

This stage of our protocol is a special case of SoftSpokenVOLE, with the dif-
ference that we use all-but-one vector commitments instead of all-but-one oblivious
transfer. So to define the bad event, we define an extractor Ext2, which corresponds
to the extractor/simulator of the subspace VOLE from [BBD+23, Figure 5]. That is,
we explain how the protocol parameters and simulation match up; a tedious hurdle
is to account the fact that our VOLEs are built up using two different fields F2k0 and
F2k1 (with k0 ≥ k1), whose elements are then concatenated together. We handle this
by relying on the feature of the VOLE functionality in [BBD+23] that the random
challenge ∆ does not need to be sampled from the full vector space, but rather, its
individual elements can be restricted to lie in a smaller subset of the field.

In more detail, our VOLE setup and consistency check are based on [BBD+23,
Figure 4], instantiated with the repetition code over F2, where GC = (1, . . . , 1), with
kC = 1, nC = τ , p = 2 and q = 2k0 . Define the set S∆ ⊂ Fτq to be the set of vectors

(∆0, . . . ,∆τ−1), where for each i, if i < τ0 then ∆i ∈ {0, 1}k0 is arbitrary, and
otherwise, ∆i ∈ {0, 1}k1‖0k0−k1 (viewing bit-strings as field elements in the usual
way).

Top of Section 10 67 Table of Contents

We define the extractor Ext2 to first compute (u∗i ,V
∗
i)i∈[0..τ) using Ext, and abort

if this fails. Recall that V∗i ∈ Fˆ̀×kb
2 , where b = 0 if i < τ0 and 1 otherwise. To ensure

that all V∗i ’s have the same dimensions, append k0− k1 columns of zeroes to V∗i for
every i where i ≥ τ0. Now, encode each row of V∗i as an element of Fq, translating
V∗i into a vector v∗i ∈ Fτq . Define

U′ =
[
u∗0 · · · u∗τ−1

]
∈ Fˆ̀×τ

2 , V =
[
v∗0 · · · v∗τ−1

]
∈ Fˆ̀×τ

q

Additionally define the correction matrix C = [c1 · · · cτ−1] ∈ F
ˆ̀×(τ−1)
p . This covers

step 1 of the simulator S in [BBD+23, Figure 5] (receiving U′,V from P∗), and
step 2 (receiving C from P∗). In step 4, S samples the hash H for the consistency
check. This corresponds to the matrix associated with VOLEHash(chall1, ·), a linear
hash. Observe that since we describe how the first query µ‖hcom‖c1‖ . . . ‖cτ−1‖iv
is handled, the game samples chall1 and hence is free to program it (to whatever
hash S sampled). At this point, the bad event for the VOLE consistency can be
defined exactly as in the proof of [BBD+23, Theorem 2]. However, to make sense of
the bad event, we need to explain the simulator/extractor S of [BBD+23] further.
As the next step, step 5, S receives the purported hash values ũ ∈ {0, 1}λ+B, Ṽ ∈
{0, 1}(λ+B)×λ. In our case, these will be extracted from preimages, namely from
a query chall1‖ũ‖hV ‖d to H2

2 (to obtain chall2), and a query Ṽ to H1 (to obtain
hV). At that point, our extraction proceeds exactly as the simulator (steps 6–9)
to compute the corrected VOLE inputs u∗,V∗. In particular, it computes a set
G ⊆ [0, τ) of guessed columns and challenge values ∆∗i for these columns, which are
inconsistent with the correction. If the adversary’s guesses do not occur, the verifier
will eventually reject.

Going back to the VOLEHash and its bad event, we import following claim
from [BBD+23, Theorem 2].

Claim 1. We say the consistency check is bad, if the set G which S computes is not
guaranteed to cover all cheating challenges. It holds that: For all (u∗i ,V

∗
i)i∈[0..τ),

C = [c1 · · · cτ−1] ∈ F
ˆ̀×(τ−1)
p , the probability that the consistency check is bad for

independently sampled VOLEHash is at most εv
(
τ
2

)
.

Proof. See proof of [BBD+23, Theorem 2].

Let FailVOLEHash be event that (extraction succeeds but) the VOLE check fails
for some query of A to H1

2. By Claim 1 and a union bound,

Pr[FailVOLEHash] ≤ Q2,1

(
τ

2

)
εv

Game G5: We modify the handling of a query chall1‖ũ‖hV ‖d to H2
2 by A as

follows:

– If chall1 has no preimage under H1
2, i.e., is not in L1

2, then query chall1 under H1
2

to add it as a node in the graph (from game G2).
– If hV has no preimage under H1, i.e., is not in L1, then query hV under H1 to

add it as a node in the graph (from game G2).

This increases the bound on the random oracle queries of the game to

Q1 = Q1 +Q2,1 +Q2,2 Q2,1 = Q2,1 +Q2,2.

Top of Section 10 68 Table of Contents

Game G6: In the following, we always consider the interaction associated to some
chall1, which also by assumption, is a preimage of H1

2 where VOLE extraction was
successful; other cases are not modified. For such a chall1, we modify the handling
of a query chall1‖ũ‖hV ‖d to H2

2 by A as follows:

– Sample chall2 ∈ {0, 1}3λ+64 and check if the ZK soundness check was bad (as
defined below), and abort if that happens.

– Look up a preimage Ṽ of hV under H1. If a preimage does not exist, the extraction
aborts.

Building on game G4, which asserts that the VOLE relation corresponding to
chall1 is extracted, and the SSOT simulator (also described in game G4), which is
perfect unless the bad event excluded in game G4 occurs, we obtain the corrected
VOLE parts u and v. Thus, we can extract the purported witness w from d in
the query, by setting w := d ⊕ u[0,...,`), undoing the masking in FAEST.Sign. If

the extracted witness violates the quadratic constraints (fi)
C
i=1 of the OWF that it

should satisfy, but the random linear combination of the ZKHash does not, then this
is the bad event. More precisely:

Claim 2 (ZK Hash check failure). Let h = [h1, h2] ∈ F1×`
2λ
× F2λ denote the matrix

associated with the linear hash ZKHash, i.e., ZKHash(chall2, (x0, x1)) = h1x0 +h2x1.
Let e ∈ F2λ be the degree 2 coefficient of fi(ξ · w + v) in the variable ξ, which
is 0 if and only if w satisfies all (fi)

C
i=1, where C is the number of multiplication

constraints, cf. Table 2.2.

Define the bad event (“ZK Hash check fails”) as e 6= 0 but h0 ·e = 0, i.e. the event
where ZK Hash corrects an error into a valid VOLE correlation. The probability that
the ZK Hash check fails for an independent chosen hash chall2 is at most εzk.

Proof. This follows from the εzk-universality of ZKHash.

Let FailZKHash be the event that any ZK Hash check fails for a query of A to H2
2

(which is modified in this game). By Claim 2 and a union bound, we find

Pr[FailZKHash] ≤ Q2,2εzk.

Game G7: We modify the handling of a query chall2‖ã‖b̃ to H3
2 by A as follows:

If chall2 has no preimage under H2
2, i.e., is not in L2

2, then query chall2 under H2
2

to add it as a node in the graph (from game G2). This increases the bound on the
random oracle queries of the game to

Q2,2 = Q2,2 +Q2,3.

Game G8: In the following, we further modify the handling of a query chall2‖ã‖b̃
to H3

2 by A. We always consider the interaction associated to some chall2 and chall1
of the same partial transcripts, such that the VOLE extraction was success for chall1;
other cases are not modified. The game’s changes are as follows

1. The game looks up the preimage of chall2 to find hV and then looks up the
preimage Ṽ of hV . If a preimage does not exist, the extraction aborts.

2. As in game G6, obtain u, v and define the witness w.

3. The game samples chall3 ∈ {0, 1}λ.

4. If the bad event described below occurs, abort the game.

Top of Section 10 69 Table of Contents

Claim 3 (QuickSilver check). Suppose that the witness w does not satisfy the con-
straints (fi)

C
i=1. Then neither does the random linear combination via ZKHash, due

to the abort introduced in G6. The bad event is: for uniformly random chall3, ∆ and
q̃ together with ã are such that chall′3 = chall3, where chall′3 is computed using the b̃
queried by the adversary. The probability of this event is bounded by 2/2λ.

Proof. If the quadratic equation is not satisfied, then the “error polynomial” is
a quadratic polynomial, which must agree with a linear polynomial evaluated at
the random point ∆. This can occur in at most two points, hence 2 out of 2λ

challenges.

Let FailQS be the event that the QuickSilver check fails for any query of A to H3
2

(which is modified in this game). By Claim 3 and a union bound, we find

Pr[FailQS] ≤ Q2,32−λ+1.

Claim 4. If a forgery is valid, then a valid witness for the OWF specified by pk is
extracted during game G8.

Proof. If the adversary wins, then by the changes in games until G8,

– the VOLE is extracted and a witness w computed, so that
– the witness satisfies all constraints if and only if it satisfies the constraint obtained

by the random linear combination (by G6), and
– the Quicksilver check was not bad.

Since the Quicksilver check was not bad, the input to the check was a quadratic
relation which holds. That relation is the ZKHash of the OWF relations (fi)

C
i=1. By

the second item, it follows that if the linearly combined constraint is satisfied, then
all constraints are satisfied. In other words, the witness w satisfies all (fi)

C
i=1, as

required.

Probability of an abort due to G2. In game G2, we introduced aborts when-
ever a preimage or collision attack succeeded on a random oracle. Lemma 4 bounds
this probability in the total number of queries. Thus, we get the following probability
bounds for the bad events:

Pr[Fail0] ≤ Q2
0/2

2λ Pr[Fail1] ≤ Q2
1/2

2λ

Pr[Fail2,1] ≤ Q2
2,1/2

5λ+64 Pr[Fail2,2] ≤ Q2
2,2/2

3λ+64

where
Q0 = Q0 +Q2,1 Q1 = Q1 +Q2,1 +Q2,2

Q2,1 = Q2,1 +Q2,2 Q2,2 = Q2,2 +Q2,3

Overall, by a union bound and some rough upper bounds, we find

Pr[F0 ∨ F1 ∨ F2,1 ∨ F2,2] ≤ (Q0 +Q1 +Q2)2/22λ

≤ 3 · (Q0 +Q1 +Q2)2/22λ

where Q2 = Q2,1 +Q2,2 +Q2,3.

Reduction to OWF. Finally, we give a reduction B to the OWF security. Given
a OWF challenge (x,y) for uniformly random x, k and fk(x) = y, define pk = (x,y).
Run game G8 with A and if A wins, then by Claim 4 obtain a witness which, in

Top of Section 10 70 Table of Contents

particular, contains a preimage k∗ with fk∗(x) = y. The reduction B outputs k∗,
and thus wins whenever A wins game G8. Moreover, if A wins EUF-KO, i.e., game
G1, it also wins G8 unless an abort occurred. Taking all abort probabilities in game
G8 together, we find

AdvEUF-KO
A ≤ 3 · (Q0 +Q1 +Q2)2 · 2−2λ

+Q2,1 ·
(
τ

2

)
· εv

+Q2,2 · εzk
+Q2,3 · 2−λ+1

+ AdvOWF
B .

This concludes the proof.

Theorem 2 (FAEST is EUF-CMA secure). Let H0,H1,H
1
2,H

2
2 and H3

2 be modeled
as random oracles and H3 be a PRF, then for any PPT adversary A which makes
Qsig queries to Osig and Q0, Q1, Q2,1, Q2,2 and Q2,3 queries to H0,H1,H

1
2, H2

2 and H3
2

respectively,

AdvEUF-CMA
A ≤ Qsig ·

(
AdvPRFH3 +

Qsig +Q2,1

22λ+128
+

((N + 2)τ + 2)Qsig +Q1 +Q0

22λ

(5)

+ k0 · AdvPRGPRG2λ +
Qsig +Q2,2

25λ+64
+
Qsig +Q2,3

23λ+64

)
+ AdvPRGPRGτλ [Qsig, 1] + k0 · AdvPRGPRG2λ [Qsig, τ]

+ AdvPRGH0 [Qsig, τ] + AdvPRGPRGˆ̀[Qsig, τ] (6)

+ AdvEUF-KO
B

Proof. Let A be an arbitrary adversary against the EUF-CMA security of FAEST. We
define a sequence of games which begins with A playing the real EUF-CMA game,
where the signing oracle Osig uses the real secret key sk to compute signatures, and
ends with Osig simulating signatures without using sk.

We then define the reduction B playing in the EUF-KO game to play the role
of Osig for A in the final game of the sequence and to output the forgery that A
outputs. From this definition, it follows that B is successful in the EUF-KO game
whenever A is in the final game.

The sequence of games is defined as follows:

G1: A plays the EUF-CMA game with a real signature oracle.
G2: Osig samples r ∈ {0, 1}λ and iv ∈ {0, 1}128 at random instead of computing

H3(sk‖µ‖ρ).
The difference between this game and the previous one reduces to the PRF
security of H3 with secret key ρ. Since we need to change (r, iv) in every query
to Osig, we run a hybrid argument and obtain:

|Pr [A wins G1]− Pr [A wins G2]| ≤ Qsig · AdvPRFH3 . (7)

G3: Osig samples chall1 ∈ {0, 1}5λ+64 at random in every query. When µ‖hcom‖c1‖
. . . ‖cτ−1‖iv is queried to H1

2, abort if this query has already been made during
the game; otherwise program H1

2 to output chall1 on this input. As iv is random
and hcom is sufficiently pseudorandom, we get the following

Top of Section 10 71 Table of Contents

Claim.

Pr[G3 aborts] ≤Qsig ·
(Qsig +Q2,1

22λ+128
+

((N + 2)τ + 2)Qsig +Q1 +Q0

22λ

+ d · AdvPRGPRG2λ

)
.

Proof. We proceed via an additional sequence of hybrids where we replace in-
termediate values by randomness in the VC commitment com0, which is part of
hcom = H1(com0, . . . , comτ−1). More concretely, the PRG evaluations of the left-
most path of the GGM tree in com0 are replaced by randomness, and the further
hashes (sd0, com0) = H0(kk0

0 ‖iv) and h = H1(com0, . . . , comN−1) in VC.Commit,
as well as hcom = H1(com0, . . . , comτ−1) in VOLECommit are replaced by ran-
domness as well. For i′ = 0, . . . , d (where d = k0), define

G3,i′: When Osig calls VC.Commit in Line 5 of VOLECommit for loop index i = 0,
then for loop indices j = 0 and i ≤ i′ in Line 3 of the PRG calls of VC.Commit
the PRG outputs (ki0, k

i
1) are replaced by uniformly random strings.

In addition, we define 3 more games,

G3,d+1: In addition, the output (sd0, com0) of H0 in Line 5 of VC.Commit (again
only for the VC.Commit call in Line 5 of VOLECommit for loop index i = 0)
is replaced with a uniformly random string for loop index j = 0.

G3,d+2: In addition, the output h of H1 in Line 6 of VC.Commit (again only for
the VC.Commit call in Line 5 of VOLECommit for loop index i = 0) is replaced
by a random string.

G3,d+3: In addition, the output hcom of Line 12 of VOLECommit is replaced with
a random string.

In G3,d+3, the input µ‖hcom‖c1‖ . . . ‖cτ−1‖iv to H1
2 has min-entropy at least 2λ+

128, so abort happens with probability at most

Pr[G3,d+3 aborts] ≤ Qsig ·
Qsig +Q2,1

22λ+128
.

It remains to bound the differences in abort probability of consecutive hybrids.
H1(·‖com1‖...‖comτ−1) is a random-oracle-based PRG with seed length 2λ. In
G3,d+2, it is seeded by a random string to produce hcom in Line 12 of VOLECommit,
which is uniformly random in G3,d+3. We thus get

|Pr[G3,d+3 aborts]− Pr[G3,d+2 aborts]| ≤ Qsig
(τ + 1)Qsig +Q1

22λ
.

By a similar argument we get

|Pr[G3,d+2 aborts]− Pr[G3,d+1 aborts]| ≤ Qsig
(τ + 1)Qsig +Q1

22λ

and

|Pr[G3,d+1 aborts]− Pr[G3,d aborts]| ≤ Qsig
NτQsig +Q0

22λ
.

For i ∈ {0, . . . , d − 1}, the difference between G3,i and G3,i+1 is that for each
generated signature, one output of PRG is real in the former and random in the
latter. Hence

|Pr[G3,i aborts]− Pr[G3,i+1 aborts]| ≤ Qsig · AdvPRGPRG2λ
A .

Top of Section 10 72 Table of Contents

The triangle inequality now yields

Pr[G3 aborts] ≤Qsig ·
(Qsig +Q2,1

22λ+128
+

((N0 + 2)τ + 2)Qsig +Q1 +Q0

22λ

+ k0 · AdvPRGPRG2λ

)
.

where we inserted d = k0 and N = N0.

G4: Osig samples chall2 ∈ {0, 1}3λ+64 at random in every query. When chall1‖ũ‖hV ‖d
is queried to H2

2, abort if this query has already been made during the game;
otherwise program H2

2 to output chall2 on this input.
G4 can only abort if chall1 has been previously returned by H1

2; since chall1 is
fresh because of G3, by a hybrid argument, the abort probability in this game is:

Pr[G4 aborts] ≤ Qsig ·
Qsig +Q2,2

25λ+64
.

G5: Osig samples chall3 ∈ {0, 1}λ at random in every query. When chall2‖ã‖b̃ is
queried to H3

2, abort if this query has already been made during the game; oth-
erwise program H3

2 to output chall3 on this input.
G5 can only abort if chall2 has been previously returned by H2

2; since chall2 is
fresh because of G4, by a hybrid argument, the abort probability of this game is:

Pr[G5 aborts] ≤ Qsig ·
Qsig +Q2,3

23λ+64
.

Observe that the relevant elements of this game are now the same as the hiding
experiment for VOLECommit described in Lemma 5.

G6: Osig replaces the call to VOLECommit by uniformly sampling u ∈ Fˆ̀
2 and

(ci)i∈[1..τ) and computing V ∈ Fˆ̀×λ
2 such that the VOLE relation holds with

the ∆ and qi values that result from chall3; it does so in every signature query.
By Lemma 5, the difference between this game and the previous one is

|Pr[A wins G5]−Pr[A wins G6]|
≤ AdvPRGPRGτλ [Qsig, 1] + k0 · AdvPRGPRG2λ [Qsig, τ]

+ AdvPRGH0 [Qsig, τ] + AdvPRGPRGˆ̀[Qsig, τ].

After this change, the distribution of (u,V) is uniform (modulo the VOLE rela-
tion) and independent of the VOLE commitments (ci)i∈[1..τ).

G7: In every query, Osig samples ũ and Ṽ at random (modulo the VOLE relation
with Q̃ and ∆) instead of computing VOLEHash during the signing. It then
adjusts the last λ + B elements of u and rows of V to match ũ and Ṽ when
VOLEHash is applied under challenge chall1 to u,V.
Since the last λ+B elements of u and rows of V are uniformly random (modulo
the VOLE relation) because of G6, and VOLEHash is F`+λ2 -hiding by Lemma 1,
this game is perfectly indistinguishable from the previous one.

G8: In every query, Osig samples ã and b̃ at random (modulo the VOLE relation)
instead of computing ZKHash. It then computes AESProve, but adjusts the u,V
in rows [`..`+λ) to match ã and b̃ when ZKHash is applied under challenge chall2
to a1‖u∗,a0‖v∗.
Since the respective rows of u and V are uniformly random (modulo the VOLE
relation) because of G6, and ZKHash is F`

2λ
-hiding by Lemma 2, the distribution of

(ã, b̃) is unchanged and this game is perfectly indistinguishable from the previous
one.

Top of Section 10 73 Table of Contents

G9: Now the computation of ã and b̃ is independent of w, soOsig samples d uniformly
at random in every query instead of computing d := w + u[0..`).

This does not change the distribution of d because u is uniform since G6 and
the first ` elements were not used in games G7 and G8 to produce their outputs,
hence this game is perfectly indistinguishable from the previous one.

In G9, we see that the distribution of σ produced by Osig no longer depends on the
secret key sk and the success probability of A in this final game can be reduced to
the EUF-KO security of FAEST using the B reduction defined above.

10.1.3 QROM security. In this section, we provide evidence (short of a full
proof) for the security of FAEST in the quantum-accessible random oracle model
(QROM). More precisely, we give a non-tight security proof that relies on conjectural
straightline-extractability of the VOLE commitment.

We begin with a QROM version of Theorem 2. To this end, we need to reprogram
quantum-accessible random oracles (QROs). The re-sampling game REPROb for b ∈
{0, 1} and an adversary AH = (AH

0 ,AH
1) with quantum access to a random oracle

H : {0, 1}∗ → {0, 1}γ is defined as follows.

1. Adversary outputs an internal state and a re-sampling point distribution (st, p)←
AH

0

2. Sample re-sampling point x ← p, y ← {0, 1}γ . Set H0 = H and H1(x) = y,
H1(x′) = H(x′) for x′ 6= x.

3. Adversary gets access to Hb, outputs guess b′ ← AHb
1 (st, x).

We need the following

Lemma 6 (Special case of Theorem 1 in [GHHM21]). Let AH = (AH
0 ,AH

1)
be an adversary for the reprogramming games Reprob, making Q queries to H. Then

∣∣Pr[b′ = 1|REPRO0]− Pr[b′ = 1|REPRO1]
∣∣ ≤ 3

2

√
Qpmax,

where pmax = Ep(maxx p(x)), the maximum probability of any element under the
probability distribution output by A0.

Theorem 3 (EUF-CMA security from EUF-KO security in the QROM). Let
H0, H1,H

1
2,H

2
2 and H3

2 be modeled as quantum-accessible random oracles and H3 be
modeled as a post-quantum PRF, then for any QPT adversary A which makes Qsig

queries to Osig and Q0, Q1, Q2,1, Q2,2 and Q2,3 queries to H0, H1,H
1
2,H

2
2 and H3

2

respectively,

AdvEUF-CMA
A ≤ Qsig ·

(
AdvPRFH3 +

3

2

√
Qsig +Q2,1

22λ+128
+ 2

((N + 2)τ + 2)Qsig +Q1 +Q0

22λ

+ 2k0 · AdvPRGPRG2λ +
3

2

√
Qsig +Q2,2

25λ+64
+

3

2

√
Qsig +Q2,3

23λ+64

)
+ AdvPRGPRGτλ [Qsig, 1] + k0 · AdvPRGPRG2λ [Qsig, τ] (8)

+ AdvPRGH0 [Qsig, τ] + AdvPRGPRGˆ̀[Qsig, τ]

+ AdvColResH1 + AdvEUF-KO
B .

Top of Section 10 74 Table of Contents

Proof. The proof follows almost the same series of games as the proof of Theorem 2.
G1 and G2 are defined identically to the ones in the proof of Theorem 2, and Equa-
tion (7) holds with the PRF advantage defined with respect to quantum computing
adversaries. G3 is identical except that it doesn’t abort. Instead, we define hybrid Hi

reprogramming H1
2 for the first i calls of Osig. For each i, we construct an adversary

Bi for the reprogramming games REPROb. Bi0 simulates Hi for A until right before
the i + 1st call to Osig. Then it outputs the distribution of µ‖hcom‖c1‖ . . . ‖cτ−1‖iv
for the i+ 1st query. Bi1 uses its input x in place of µ‖hcom‖c1‖ . . . ‖cτ−1‖iv to gen-
erate the reply to the i+ 1st Osig query and finishes simulating Hi. If the simulated
A outputs a valid forgery output 0, otherwise output 1. Using the same sequence
of hybrids as in the proof of the claim in G3 in the proof of Theorem 2, the games
REPROb are successively transformed until hcom is random. Compared to the classi-
cal hybrid sequence, we incur each loss twice, once for changing REPRO0 and once
for changing REPRO1. Using Lemma 6 we conclude

|Pr[A succeeds in G3]− Pr[A succeeds in G2]|

≤Qsig

(
3

2

√
Qsig +Q2,1

2λ+128
+ 2

((N + 2)τ + 2)Qsig +Q1 +Q0

22λ

+ 2d · AdvPRGPRG2λ

)
.

The transitions G3 to G4 and G4 to G5 are obtained in the same way by con-
structing re-sampling game adversaries instead of aborting, yielding

|Pr[A succeeds in G4]− Pr[A succeeds in G3]| ≤ 3

2
Qsig

√
Qsig +Q2,2

25λ+64

and

|Pr[A succeeds in G4]− Pr[A succeeds in G3]| ≤ 3

2
Qsig

√
Qsig +Q2,3

23λ+64
.

The remaining game transitions are identical to the proof of Theorem 2, except that
all adversarial advantages have to be defined with respect to quantum computing
adversaries.

It remains to bound AdvEUF-KO
B . FAEST.Sign can be interpreted as a mild tweak

of the Fiat Shamir transformation of the 7-round identification scheme ΠFAEST de-
fined as follows, referring to the lines in algorithm FAEST.Sign.

1. Prover runs line 5 with uniformly random r and sends the arguments of H1
2 in

line 6 except µ.
2. Verifier sends uniformly random chall1.
3. Prover runs lines 6-12 and sends the arguments of H2

2 in line 13 except chall1.
4. Verifier sends uniformly random chall2.
5. Prover runs lines 14-17 and sends the arguments of H3

2 in line 18 except chall2.
6. Verifier sends uniformly random chall3.
7. Prover runs lines 19-23 and sends σ except chall3, together with b̃ computed in

line 17.
8. Verifier runs FAEST.Verify, skipping lines 5, 17 and 20 and using the values for

challi i = 1, 2, 3 it sent.

Top of Section 10 75 Table of Contents

We denote the verifier of ΠFAEST by VΠFAEST
. The signature scheme FAEST is now

obtained from ΠFAEST by i) applying the hash-then-sign construction (µ in Line
2 of FAEST.Sign is the message hash), ii) applying the multi-round Fiat-Shamir
transformation, and iii) replacing some data that can be recomputed by the veri-
fier (hcom, hV , b̃) by (random-oracle-based) commitments to them. For the following
QROM security considerations, we will ignore i) and iii) as the post-quantum secu-
rity of Hash-then-Sign up to collision finding is well-known, and a signature for the
scheme without iii) can be converted by anybody into a FAEST signature, and vice
versa.

A natural strategy to prove knowledge soundness of ΠFAEST in the QROM is to
show extractability of the VOLE commitment in the QROM, i.e. to prove a QROM
analogue of Lemma 3. We formulate it here as a conjecture and intend to prove it
in the near future.

Conjecture 1. Consider the extractable binding game for algorithms (VOLECommit,
VOLEReconstruct), a stateful adversary A and a straightline extractor ExtVC de-
scribed in Lemma 3.

Suppose A is any adversary making at most Q0, Q1 quantum queries to the or-
acles H0,H1 respectively. Moreover, suppose that A checks if
VOLEVerify(hcom, chall, (pdecomi)i∈[0..τ), iv, ˆ̀; param) = 1 for the purported decom-
mitment, and otherwise outputs ⊥. There exists a straightline extractor Ext such
that the advantage of A in the game is at most

poly(Q0, Q1)

2γλ
.

for some polynomial poly and a constant γ > 0

We present some evidence towards this conjecture.

– Plain hash-based commitments are known to be straightline extractable in the
QROM [DFMS22].

– The proof strategy for Lemmas 3 and 4 seems amenable to generalization to the
QROM via the compressed oracle method [Zha19, CFHL21]. The graph game in
Lemma 4 includes finding pre-images of existing input values. In the compressed
oracle framework, finding such a pre-image cannot be witnessed based just on
the internal oracle register’s state (just as it requires comparing the query graph
before the query and the present query’s input-output pair in the classical case).
It can, however, be witnessed by applying a combined query/check operator
acting on the internal oracle register and the adversary’s query register.

Based on the conjectural straightline extractor ExtVC for the VOLE commitment,
we can construct a straightforward extractor ExtΠ for ΠFAEST. Given a malicious
prover A against ΠFAEST, the extractor ExtAΠ(pk) lets ExtVC simulate the QROs for
A(pk) to obtain the extraction result (u∗,V∗) and a transcript

T = (hcom‖c1‖ . . . ‖cτ−1‖iv, chall1, ũ‖hV ‖d, chall2, ã‖b̃, chall3, (pdecomi)i∈[0..τ)),

computes w = d⊕ u∗[0,...,`) and outputs sk = w.

Top of Section 10 76 Table of Contents

Theorem 4. Assuming Conjecture 1, ΠFAEST is a quantum proof of knowledge with
extractor ExtΠ . More precisely, we have

Pr

[
(sk′, pk) is valid

∣∣∣∣∣ (sk, pk)← Gen(1λ)

sk′ ← ExtAΠ(pk)

]
≥ Pr[〈VΠFAEST

,A(pk)〉 = accept |(sk, pk)← Gen(1λ)]

− poly(Q0, Q1)

2γλ
− εv

(
τ

2

)
− εzk − 2/2λ.

Proof. The verifier of ΠFAEST performs the VOLE commitment check as part of its
verification. We thus have by Conjecture 1, that

Pr

[
bad1 ∧ 〈VΠFAEST

,A(pk)〉 = accept

∣∣∣∣∣ (sk, pk)← Gen(1λ)

sk′ ← ExtAΠ(pk)

]

≤ poly(Q0, Q1)

2γλ
,

where bad1 is the event that the pair (u∗,V∗) extracted by the instance of ExtVC
run by ExtΠ does not yield VOLE instances.

What is left is to analyze the probability with which any of the probabilistic
checks the verifier performs, facilitated by the challenges challi, fails. The proof
system only uses random oracles for the VOLE commitment, so its soundness given
successfully extracted VOLE correlations is proven in the same way classically and in
the post-quantum case. It was analyzed in [BBD+23] and in the proof of Theorem 1,
so we only give a sketch here.

Suppose first that there exists an i ∈ {1, . . . , τ − 1} such that ui 6= u0 ⊕ ci. Call
this event bad2. According to Claim 1, the verifier accepts with probability at most
εv
(
τ
2

)
.

Next, suppose that the extracted VOLE instances u,V allow to extract a can-
didate witness w but which is incorrect for the OWF, as it violates a multiplication
constraint as expressed in Equation Equation (2). Consider these constraints as
equations in X, which for every inconsistency must be of degree 2. Let bad3 be the
event that the output of ZKHash on all constraints lets the degree 2 term of the
linear combination of the constraints vanish. This happens with probability at most
εzk by the universality of the hash function.

Finally, suppose again that the extracted witness violates a multiplication con-
straint as expressed in Equation Equation (2). This means that in a consistency test,
the relation checked by the verifier has a non-zero term in X2. At the same time, the
verifier compares by evaluating a degree 1 relation defined by ã, b̃ in the point ∆ to
test equality. Let bad4 be the event that both the degree 2 and degree 1 constraints
coincide when evaluated in ∆. According to Claim 3 this happens with probability
at most 2/2λ.

We can now bound

Pr [(sk, pk) is valid]

≥ Pr [(sk, pk) is valid ∧ 〈VΠFAEST
,A(pk)〉 = accept]

≥ Pr [〈VΠFAEST
,A(pk)〉 = accept]− Pr [(sk, pk) is invalid ∧ 〈VΠFAEST

,A(pk)〉 = accept]

Here and in the following, all probabilities are taken over (sk, pk) ← Gen(1λ) and
sk← ExtAΠ(pk). If the verifier accepts, a good VOLE pair is extracted by ExtVC and

Top of Section 10 77 Table of Contents

neither of the bad events occurs, the extracted key pair is valid. We thus have

Pr [(sk, pk) is invalid ∧ 〈VΠFAEST
,A(pk)〉 = accept]

≤ Pr [(bad1 ∨ bad2 ∨ bad3 ∨ bad4) ∧ 〈VΠFAEST
,A(pk)〉 = accept]

≤ Pr [bad1 ∧ 〈VΠFAEST
,A(pk)〉 = accept] + Pr [bad2 ∧ 〈VΠFAEST

,A(pk)〉 = accept]

+ Pr [bad3 ∧ 〈VΠFAEST
,A(pk)〉 = accept] + Pr [bad4 ∧ 〈VΠFAEST

,A(pk)〉 = accept]

≤ poly(Q0, Q1)

2γλ
+ εv

(
τ

2

)
+ εzk + 2/2λ.

We can now use the fact that ΠFAEST is a quantum proof of knowledge to show
that its Fiat-Shamir transform is a quantum proof of knowledge as well (Corollary
15 in [DFM20]). This allows inverting the underlying AES-based OWF by reduction
to breaking EUF-KO-security of FAEST′, the digital signature scheme where (pk,m)
is used in place of µ in algorithms FAEST.Sign and FAEST.Verify.

Theorem 5. Let H0, H1 and H1
2,H

2
2,H

3
2 be modeled as quantum-accessible random

oracles and (λ, τ, param, paramOWF) be parameters of the FAEST′ signature. Let A be
an adversary and let Q0, Q1, Q2,i denote upper bounds on the number of quantum
queries of A to H0, H1, Hi2, respectively, and let Q2 = Q2,1 + Q2,2 + Q2,3. Then,
Assuming Conjecture 1,

AdvEUF-KO−QROM
A

≤ (2Q2 + 4)6

6

(
AdvOWF

D + 6 · 2−λ +
poly(Q0, Q1)

2γλ
+ εv

(
τ

2

)
+ εzk + 2−λ+1

)
(9)

Proof. ΠFAEST, an identification scheme, is an interactive proof of knowledge of a
secret key. In other words, the set of statements to be proven is the set of possible
public keys, and the secret key corresponding to a given public key is a witness.
Let Π ′FAEST be the proof system obtained from ΠFAEST by augmenting the set of
statements by appending messages to the public keys (for the details of this for-
malism, see, e.g., Section 8 of [Unr17]). We can regard FAEST as the Fiat-Shamir
transformation for public-coin interactive proof systems, applied to Π ′FAEST, and a
successful malicious prover in the QROM is exactly an EUF-KO−QROM-adversary:
It receives the public key, and convinces the verifier by generating a proof (i.e., by
forging a signature).

By Corollary 13 in [DFM20], we can use A in a black-box way to construct an
adaptive adversary B′ against Π ′FAEST such that

Pr[〈VΠFAEST
,B′(pk)〉 = accept|(sk, pk)← Gen(1λ)] ≥ 6

(2Q2 + 4)6
AdvEUF-KO−QROM

A

− 6 · 2−λ.

B′ is a partially adaptive adversary in that it takes the public key as input, but
outputs a message. From B′ we build an adversary B against ΠFAEST: B runs B′ but
discards the message it outputs. They have the same success probability. Assuming

Top of Section 10 78 Table of Contents

Conjecture 1, we can use Theorem 4 to bound

Pr

[
(sk, pk) is valid

∣∣∣∣∣ (sk′, pk)← Gen(1λ)

sk′ ← ExtBΠ(pk)

]
≥ Pr[〈VΠFAEST

,B(pk)〉 = accept|(sk, pk)← Gen(1λ)]

− poly(Q0, Q1)

2γλ
− εv

(
τ

2

)
− εzk − 2−λ+1

The algorithm ExtBΠ can now be used to construct an adversary D inverting the
one-way function. Given a OWF challenge (x,y) for uniformly random x, k and
fk(x) = y, define pk = (x,y), a public key identically distributed to the ones output
by key generation. Then, run sk′ ← ExtBΠ(pk) and output sk′. Putting the inequalities
together we get

AdvEUF-KO−QROM
A

≤ (2Q2 + 4)6

6

(
AdvOWF

D + 6 · 2−λ +
poly(Q0, Q1)

2γλ
+ εv

(
τ

2

)
+ εzk + 2−λ+1

)

10.2 Concrete Attacks

We now analyze the security of FAEST with respect to known attacks.
The cryptographic primitives used in FAEST are the one-way functions based

on AES or EM-AES, as well as the AES-CTR PRG and the SHA3 hash functions
SHAKE-128 and SHAKE-256 (Section 3.3). In Section 10.3, we give a detailed anal-
ysis of the security of the OWF constructions. The other primitives have all been
previously standardized by NIST (SP 800-90A for the AES-CTR PRG, and FIPS 202
for SHA3), have received a large amount of scrutiny and are used ubiquitously in
applications today. There are no known attacks on the pseudo-randomness of AES-
CTR, nor on the pseudo-randomness or collision-resistance of SHA3, that perform
much better than exhaustive search. In our security proof, we also model the SHA3
hash functions we use as random oracles. This is a standard practice in security
analysis of cryptography, and it is widely believed that instantiating random oracles
using SHA3 — with appropriate domain separation — does not lead to any security
weaknesses in typical protocols.

10.2.1 Brute Force the Public Key. The simplest attack strategy is to attempt
to invert the OWF output given in the public key, in order to recover the signing
key. This is essentially a key recovery attack on AES, given one or two ciphertext
blocks. A couple of slight differences must be accounted for, however. Firstly, in our
case, since KeyGen uses rejection sampling to sample a key such that the inputs to
all S-boxes in the OWF computation are non-zero, the effective key space is reduced
slightly in size. Secondly, since there are only one or two blocks of AES output in
the public key, it is possible that there are collisions, and the attacker could find
a different key k′ that is still a preimage of the OWF. In Section 10.3.4, we study
the cost of this attack on each of our OWF instances, taking into account these
differences and some further attack optimizations. Overall, as shown in Table 10.2,
we estimate the attack cost for the FAEST and FAEST-EM instances to be between
2λ−2 and 2λ−1 evaluations of AES-λ. So, our OWFs lose only around 1–2 bits of
security, compared with standard AES encryption.

Top of Section 10 79 Table of Contents

10.2.2 Brute Force the PRG. Another way to try to recover the signing
key is to attack the pseudo-random generator PRG, used in the VC.Commit and
ConvertToVOLE procedures. As described in Section 3.3, PRG is built using AES-
CTR at the λ-bit security level, with a random, per-signature IV. Suppose an at-
tacker is attempting to recover the secret key, given just one signature. Since the
same IV is used in several PRG calls, an attacker may attempt to mount a multi-
target attack, where a single key guess is tested for correctness with n possible
candidates. If testing correctness with respect to all n candidates is cheaper than
computing n AES-CTR outputs, then this can be cheaper than a naive brute-force
attack. This is a type of time/space tradeoff attack, which has been explored in
other post-quantum signature schemes like Picnic [DN19].

We first consider the length-doubling PRGs used in the tree-based vector com-
mitment algorithm, VC.Commit. At each level of the tree, a signature reveals all-but-
one of the keys corresponding to the nodes at that level. Given a candidate guess g
for a missing key, the guess can be verified by expanding g into two new keys using
PRG, and then comparing these keys with the corresponding known left/right keys
in the tree. If there is a match, it’s likely (unless we have found a collision in one
half of the PRG output) that g is the correct missing key and allows recovering the
missing leaf, which then leaks the secret witness. A second place14 PRG is used is in
the ConvertToVOLE algorithm, where each seed sdi is expanded, and then the sum
of these outputs forms the vector u used to mask the witness. Since all-but-one of
the seeds are known, this PRG may be attacked in a similar way, since given any
guess g and the first block of AES-CTR under key g, one gets a candidate signing
key k that can be tested for.

Combining these two stages, given any guess g and the first 2λ output bits of
AES-CTR under g, an adversary can compare g with up to k0 ≤ 12 PRG candidate
keys from VC.Commit, plus one more for the PRG in ConvertToVOLE. Since these
steps are repeated τ times, there are a total of τ0k0 + τ1k1 + τ = λ+ τ values that
can be tested with a guess g. Assuming each test can be done with a cheap lookup
table, this attack requires around 2λ/(λ + τ) guesses, or approximately 2121, 2184

and 2248 AES-λ evaluations for λ = 128, 192 and 256 respectively. These estimates
are slightly smaller than, but still comparable to, the expected 2λ−1 cost of a brute-
force attack on AES. In future, a possible mitigation for this attack would be to use
unique IVs for each PRG.

Given Multiple Signatures. Suppose the attacker is given up to Qsig signatures. Since
each signature uses an independent, random iv ∈ {0, 1}128, we expect all IVs to be
unique with good probability, as long as Qsig < 264. If the IVs are unique then we
are not aware of any attacks that exploit having multiple signatures and perform
better than the single signature attack described above. If there are a small number
of collisions, say c, then the attack’s complexity will be reduced by a factor of c,
since there are c times as many PRG targets with the same IV to attack. However,
since collisions are unlikely to happen and out of the control of the attacker, having
a large number of signatures does not seem to help the attacker here.

10.2.3 Attack Soundness of the ZK Protocol. Instead of directly recovering
the signing key, an attacker may attempt to forge a signature by violating the sound-

14PRG is also used to derive the randomness ri in VOLECommit, however, this does not seem
to permit a multi-target attack, since there’s no way to verify a guess for ri without performing
another PRG call.

Top of Section 10 80 Table of Contents

ness property of the underlying interactive proof, using an invalid witness with the
public key. Soundness is covered in our EU-KO security proof in Theorem 1. This
proof is tight, up to a small constant factor, and we now explain why the individual
terms in the adversary’s advantage do not lead to any effective attacks when our
concrete SHA3-based hash functions are modeled as random oracles.

The first advantage term in the theorem corresponds to finding a collision in a
random oracle with 22λ output bits, which requires around 2λ queries to succeed.
Since we use SHAKE instead of a random oracle, this is equivalent to a generic
collision search on SHAKE. The second advantage term is Q2,1 ·

(
τ
2

)
εv, where Q2,1 is a

number of random oracle queries performed by the adversary. Since εv ≤ 2−λ−B and
our parameters always ensure that B ≥ 2 log τ , the term is bounded by Q2,1 ·2−λ, so
has the same cost as a generic preimage attack on SHAKE with λ bits of output. The
third and fourth advantage terms of Q2,2εzk and Q2,32−λ−1 correspond to cheating
in the QuickSilver zero-knowledge proof check; since εzk ≤ 2−λ, these attacks again
require close to 2λ SHAKE evaluations to succeed. Note that, since SHAKE is more
costly to evaluate than AES, none of these attacks are worthwhile for an attacker
compared with directly inverting the one-way function in the public key to recover
the secret key (which is the final advantage term in Theorem 1).

10.2.4 Multi-User Attacks. We have also taken steps to ensure that FAEST
remains secure in a multi-user setting, where many different signers are using the
same signing algorithms but with independently generated public keys. We first
consider the setting where an attacker has access to a large number of public keys
pk1, . . . , pkN , and wishes to recover a single secret key ski. Since each pki uses an
independently sampled x in KeyGen, which defines the OWF F(·)(x), there is no way
to perform a multi-target attack (as described above in the single user setting) across
all N OWF instances. Indeed, any attempt at exhaustive search must be based on a
value x for a specific user, so having multiple instances does not help carry out the
attack. Another countermeasure that helps prevent this type of attack is the random
IVs sampled for each signature, which again ensure independence of the PRGs used
across different signatures and public keys.

Another type of multi-user attack is a key substitution attack [MS04], where the
attacker is given a signature σ under some public key pk, and tries to find a signature
σ′ that verifies under another public key pk′ for the same message. In FAEST, we
avoid this type of attacking by hashing the public key together with the message to
obtain the hash µ. This uniquely binds the public key to each signature, preventing
key substitution.

10.3 Concrete Analysis of AES as a OWF

We now analyze the concrete security of the one-way functions used in FAEST and
FAEST-EM. We begin, in Section 10.3.1, by studying security of a OWF built from
one or more block cipher evaluations, with a tight reduction to the PRP security
of the cipher. This corresponds to the AES-based OWF used in the FAEST in-
stances. Then, in Section 10.3.2, we analyze the Even-Mansour construction, used
in FAEST-EM, where the underlying cipher is modelled as an ideal permutation.
Finally, in Section 10.3.4, we consider the effect of the reduced key space from our
requirement of non-zero S-box inputs, and analyze the best concrete attacks for
inverting each of the OWF instances.

Top of Section 10 81 Table of Contents

10.3.1 AES with Key Expansion. In [CDG+17], Chase et al. formally show
that it is possible to use a block cipher, with key size equal to the block size and
viewed as a PRF, to instantiate a OWF. Similarly, we show that our F is a OWF
based on it being the concatenation of 1 or more calls to a PRP.

Lemma 7. If P : K×M→M is a PRP, then for all sufficiently high β < |M|/2,
F ((x0, . . . , xβ−1), k) = (P (k, x0), . . . , P (k, xβ−1)) is a OWF. Concretely, any adver-
sary A against the OWF F can be turned into an adversary A′ against the PRP P ,
such that

AdvOWFFA ≤

(
1 +Bβ

|K|
|M|β

)
AdvPRPPA′ +Bβ

|K|
|M|β (|M| − β)β

,

where Bβ is the βth Bell number and (x)y = x(x − 1) · · · (x − y + 1) is the falling
factorial. A′ makes at most 2β queries to the PRP oracle, and takes computation
similar to A plus an extra β PRP evaluations.

Proof. We present a sequence of games, and bound how much the advantage can
decrease from one game to the next. Each game is a randomized algorithm that
interacts with the adversary, then outputs a rational number representing the ad-
versary’s payoff. The advantage is the expected value of the payoff.15 We will then
complete the hybrid proof by bounding the advantage of the final game.

G0: This is the OWF game: k ← K and xi ←M are all sampled independently, and
A is given xi and yi = P (k, xi) for all i. The game outputs 1 if A returns k′ such
that P (k′, xi) = yi for all i, and 0 otherwise.

G1: Instead of evaluating yi = P (k, xi), sample all yi ← M uniformly, subject to
yi = yj ⇐⇒ xi = xj for all i, j. This change reduces directly to the security of
the PRP, because k is only used for computing the yi.

G2: Reintroduce the variable k, and again sample it uniformly as k ← K. In addition
to checking P (k′, xi) = yi, also require that k′ = k. However, have the game
output |K| instead of 1 when this check succeeds. This change divides the chance
of the adversary succeeding by |K|, but multiplies the payoff on success by the
same. Therefore, the advantage is unchanged.

G3: Refactor the game by checking P (k, xi) = yi instead of P (k′, xi) = yi. If k 6= k′

then the game outputs 0 anyway, so this game behaves identically to the previous.

G4: Again refactor, this time by replacing yi with P (k, xi) in A’s input. Again, the
game will output 0 anyway if they are not equal.

G5: Notice that yi is only used in the equality checks P (k, xi) = yi for i ∈ [0, β).
Therefore, these checks all succeeding has probability exactly

1

|M| (|M| − 1) · · · (|M| − β′ + 1)
=

1

(|M|)β′
,

where β′ is the number of distinct xi. Remove these checks and all the yi, and
instead reduce the payoff on success from |K| to |K|

(|M|)β′
. The advantage for this

game is identical to the previous, because the success probability was multiplied
by (|M|)β′ , but the payoff on success was divided by the same.

15This is a generalization of the usual notion of cryptographic games, which typically only output
in {0, 1} and define advantage to be the probability of outputting 1.

Top of Section 10 82 Table of Contents

G6: So far, the xi have all been sampled uniformly. This implies a distribution for
the partition defined by which xi are equal to each other. In particular, there are
(|M|)β′ ways to assign β′ distinct values fromM to the xi, so the probability of

each partition with β′ classes (i.e., β′ distinct values of xi) is
(|M|)β′
|M|β

.

Instead, first sample a partition uniformly at random, then sample the xi to be
identical within each class, and distinct between classes. Additionally, change the

payoff on success from |K|
(|M|)β′

to Bβ
|K|
|M|β

, since Bβ is the number of partitions

of a set of size β. This does not change the advantage, because while we have

multiplied the chance of selecting each partition with β′ classes by |M|β
(|M|)β′Bβ

, we

divided the success payoff by the same.
To summarize the current game, we are now almost back at G0. However, there
are two changes: A now has to output the correct key k′ = k to win, not just
find another preimage to P (k′, xi) = yi, and the payoff of winning the game is

now Bβ
|K|
|M|β

instead of 1.

G7: Let u0, . . . , uβ−1 ∈ M be distinct, and distinct from all xi. Instead of checking
that k′ = k, check that P (k′, ui) = P (k, ui) for all i. This can only increase A’s
advantage, because if k′ = k then P (k′, ui) = P (k, ui).

G8: Like in G1, replace the evaluations of P (k, xi) with randomly sampled yi ←M,
subject to yi = yj ⇐⇒ xi = xj . Additionally, replace the evaluations of P (k, ui)
with vi, which are sampled as distinct elements ofM\(y0, . . . , yβ−1). This change
again reduces to the security of the PRP. The difference in advantage from the

previous hybrid is at most Bβ
|K|
|M|β

times the advantage of the reduction to PRP

security, because the payoff of winning has been multiplied by Bβ
|K|
|M|β

.

Finally, we bound the advantage of G8. Notice that the adversary can win only
when the freshly random values vi satisfy P (k′, ui) = vi. There are at least (|M| −
β)(|M|−β−1) · · · (|M|−2β+1) possibilities for (v0, v1, . . . , vβ−1), so A can succeed

with probability at most 1
(|M|−β)β

. The payoff on success is Bβ
|K|
|M|β

, so the advantage

of the G8 can be at most Bβ
|K|

|M|β(|M|−β)β
.

Totalling the advantage across all steps of the proof gives the stated bound.
To construct A′, randomly select which of the two reductions to run. I.e., with

probability |M|β

|M|β+Bβ |K|
run the reduction for the change from G0 to G1, and otherwise

use the one for the change from G7 to G8.

To provide some intuition for why the AdvOWF can be greater than the AdvPRP,
note that there are two ways the adversary can win the OWF game. A can either
find the correct key, or find another key consistent with the OWF output. It is only
in the former case that the PRP gets broken.

10.3.2 AES Without Key Expansion. The single-key Even–Mansour scheme
is a way to construct a block cipher F from a cryptographic permutation π [DKS12,
EM97]. It works by adding a key k to the input z (in our case set to 0) and to the
output of the permutation, i.e.,

F πk (z) = k + π(k + z) . (10)

In FAEST we instantiate π with a block cipher such as AES with x as the key,
as described in Section 2.1.3. As in the previous case, we need it to be a one-way

Top of Section 10 83 Table of Contents

function: given some (x, y) such that y = F πk (0), it should be difficult to find a
k′ such that F πk′(0) = y. More formally, the adversary’s advantage in breaking the
OWF is the following probability:

Pr[z ← {0, 1}λ, k ← {0, 1}λ, k′ ← Aπ(z, F πk (z)) : F πk′(0) = F πk (0)]. (11)

As done in previous work, we consider the single-key variant and model π as
an ideal permutation and consider attackers with oracle access to it. The following
proof is adapted from a proof of Dobrauning et al. [DKR+22]

Theorem 6. The single-key Even–Mansour construction (Equation (10)) is a se-
cure one-way function, when the permutation π is an ideal random permutation.

Proof. The attacker A is initialized with y and has oracle access to π. We must show
that the probability in Equation (11) is negligible in λ (the key size and block size
in bits).

Just before producing an output, A has made q queries to π, and has pairs (ki, yi)
where yi = π(ki) for i ∈ [0, q). W.l.o.g., we assume that inputs ki to π are distinct.

Each query is in exactly one of two cases. In the “consistent case”, A learns a
consistent key ki, which means that ki = y − yi. In the “inconsistent case”, A does
not learn a consistent key, but it does learn that both ki and k′i = y − yi cannot be
consistent keys. To see why also k′i cannot be a consistent key in the “inconsistent
case”, notice that if it were consistent then

y = π(k′i) + k′i

y = π(k′i) + y − yi
π(ki) = π(k′i) ,

which is a contradiction since π is a permutation and ki 6= k′i.

We need to bound the probability of the “consistent case” occurring. Assume
that all past queries have been in the “inconsistent case”. If π(ki) is queried in
the forward direction, then there are two possibilities: either ki = k, which has
probability at most 1/(2λ − 2i) because only thing the adversary knows about k is
that 2i possibilities have been eliminated, or ki 6= k, in which case yi = π(ki) is
uniform from a set of size 2λ − i− 1, and so has probability at most 1/(2λ − i− 1)
of outputting yi = y − ki. A similar analysis holds when π−1(yi) queried, where
either yi = y− k, and so the adversary has guessed k, or otherwise ki = π−1(yi) has
probability at most 1/(2λ − i − 1) of equaling y − yi. Combine these using a union
bound to get

1

2λ − 2i
+

1

2λ − i− 1
<

2

2λ − 2i− 1

By possibly adding an extra query, we can makes that A always queries π on
its output k′. The adversary then wins only when it hits the “correct case” defined
above, for some query. Therefore, the adversary wins with probability at most

1−
q∏
i=0

(1− 2/(2λ − 2i− 1)) = 1−
q∏
i=0

(2λ − 2(i+ 1)− 1)/(2λ − 2i− 1)

= 1− (2λ − 2(q + 1)− 1)/(2λ − 1)

= 2(q + 1)/(2λ − 1)

Top of Section 10 84 Table of Contents

The factor of 2 in the bound may be unexpected. Why can the adversary do
better than guessing the correct key k? To break the OWF, the adversary can either
find the correct key k, or another key k′ that is consistent with y. For a random
key guess ki, each of these has probability roughly 2−λ, so the guess is right with
probability roughly 2 · 2−λ. This is where the factor of 2 comes from.

10.3.3 Post-quantum security of the single-key Even-Mansour OWF.
It was shown in [ABKM22] that the single-key Even-Mansour construction is a
post-quantum-secure block cipher (i.e., a pseudo-random permutation, PRP) when
the permutation π is an ideal random permutation. Here, we quote the result from
[ABKM22], and use Lemma 7 to prove a simple corollary showing that single-key
Even-Mansour is a post-quantum-secure one-way function in the same setting. The
security bound we prove essentially matches the straight-forward Grover search at-
tack (up to a square root in success probability).

The theorem from [ABKM22], specialized to single-key Even-Mansour, is

Theorem 7 (Special case of Theorem 3 of [ABKM22]). Let A be an adver-
sary making qF classical queries to its first oracle and q quantum queries to its second
oracle. Let π and σ be uniformly random λ-bit permutations, and k ← {0, 1}λ. Then∣∣∣Pr

[
AFπk ,π(1λ) = 1

]
− Pr

[
Aσ,π(1λ) = 1

]∣∣∣
≤ 10 · 2−λ/2 (qF

√
q + q

√
qF) ,

where F πk (z) = k+π(k+z) denotes the single-key Even-Mansour construction using
permutation π and key k, and it is understood that A has forward and inverse access
to its oracles.

Plug this bound into Lemma 7 with m = λ and β = 1.

Corollary 1. Let A be an adversary making q quantum queries to its uniformly
random λ-bit permutation π. Each query can be either forward or inverse. Then,

AdvOWFAπ ≤ 20 · 2−(λ−1)/2
(√

2q + 2 + q + 1
)

+
1

2λ − 1
.

This shows that Ω(2λ/2) quantum queries to π are necessary to find an inverse to
the single-key Even-Mansour OWF, matching the mentioned Grover search attack.

10.3.4 Accounting for the Reduced Key Space. While we can almost use
Lemma 7 or Theorem 6 directly, to analyze the concrete security of our OWFs,
there’s one caveat. In the FAEST and FAEST-EM key generation algorithms, similarly
to previous MPC-in-the-Head works based on AES [DDOS19, BDK+21], a secret
key k is sampled conditioned on the fact that no S-box, either in KeyExpansion or
in Encrypt, has an input of zero. Recall that this ensures the S-box is always a field
inversion in F28 , which simplifies the zero-knowledge proof of correct AES evaluation,
used in the signing algorithm.

The authors of BBQ [DDOS19] quantify how many AES keys k do not have a
0 state byte for any SubBytes or SubWord operation given a fixed input x to the
AES instance. Assuming the inputs to each S-box are uniformly distributed, then
the probability that all s S-boxes of a OWF have non-zero input is (255/256)s. The
authors of [DDOS19] empirically validated that this assumption holds in practice.

Top of Section 10 85 Table of Contents

In FAEST, for AES128 we have s = 200. When λ ∈ {192, 256}, we use two blocks
of AES (under a single key schedule), giving s = 416 for λ = 192 and s = 500 for
λ = 256. For each instance, the effective key space is then reduced from size 2λ down
to 2λ · (255/256)s. This is shown in Table 10.2.

Total no. of S-boxes Valid keys log(|K|) One-way security

FAEST-128 200 45.7% 126.9 126.5

FAEST-192 416 19.6% 189.7 190.9

FAEST-256 500 14.1% 253.2 254.4

FAEST-EM-128 160 53.5% 127.1 125.8

FAEST-EM-192 288 32.4% 190.4 190.2

FAEST-EM-256 448 17.3% 253.5 254.2

Table 10.2: Estimating the key space K and bit security of the OWFs in terms of (log of) AES-λ
evaluations.

We caution, though, that a smaller key space K ⊂ {0, 1}λ does not necessar-
ily translate into a better key recovery attack using only |K| AES operations. To
estimate the actual attack impact, we need to account for the cost of determining
whether a candidate key k ∈ {0, 1}λ lies in K. It does not seem easy to sample
directly from K, however, one can still obtain some savings with a lazy rejection
sampling strategy. To rule out a guess k, start evaluating the OWF on k, and halt
the evaluation early if any input to an S-box is zero. A naive estimate for the number
of S-box evaluations needed for one guess is given by a geometric distribution with
parameter 1

256 , which is then truncated by terminating after s trials (corresponding
to finding a valid key in K), if s is the number of S-box evaluations in a single block.
If X is the number of evaluations, then we can write X = Y − Z, where Y is the
geometric distribution without truncation, and Z = Y − s if Y ≥ s, and otherwise
Z = 0. We have E[Y] = 256, because it is a geometric distribution, and

E[Z] = Pr[Y ≥ s]E[Z | Y ≥ s] =

(
255

256

)s
(s+ 256− s),

since Z is geometrically distributed once Y reaches s. Linearity of expectation then
gives E[X] = 256 · (1− (255

256)s).
However, this naive estimate does not account for the fact that it’s not necessary

to evaluate an S-box to determine whether its input is zero; the evaluation only
happens when the input is non-zero. We model this by giving the attacker f “free”
S-boxes, whose evaluation cost does not need to be paid. If s′ is the number of S-
boxes whose cost must be paid after the free ones are checked, then we can estimate
the number of S-box evaluations for a single evaluation as

Cf,s′ =

(
255

256

)f
· 256 ·

(
1−

(
255

256

)s′)
(12)

This comes from multiplying the previous expected value by the probability that
the f free S-boxes are all non-zero, since it is only in this case that the computation
continues. Note that this estimate is on the conservative side, since if an input to a
free S-box is non-zero, it may still need to be evaluated later.

Top of Section 10 86 Table of Contents

To determine f , we first consider the FAEST variants based on AES with the
key schedule. As part of the key schedule, there are 4 S-box inputs that can be
immediately checked. Furthermore, since the first round key equals the original key,
there are 16β free S-boxes in the first round, where β ∈ {1, 2} is the number of blocks
in the public key. Finally, after computing the key schedule, an attacker can use the
final round key together with the output in the public key to test the output of the
last round of S-boxes, giving a further 16β free S-boxes. This gives f = 32β + 4.
For the Even-Mansour variants, where the key schedule is public and there’s only
one block of size λ bits, we simply have f = λ/4, corresponding to the first and last
round of S-boxes.

To count s′, the number of non-free S-box evaluations, we only need to consider
the S-boxes in a single AES block of the public key. This is because, when carrying
out exhaustive search, in almost all key guesses it will only be necessary to compute
the output one block (since the second only needs to be tested if the first was correct).
We therefore get s′ = Ske − 32 + Senc − 4 (with Ske, Senc as in Table 2.2). For the
Even-Mansour variants, we simply have s′ = Senc − f (with Senc as in Table 2.3).

Equation (12) gives a way to estimate the number of S-box evaluations needed
for each of the 2λ potential keys in a brute force attack. To obtain a concrete security
bound, we also need to account for the small security loss from using an AES-based
PRP as a one-way function (for FAEST), or using an ideal cipher in Even-Mansour
(for FAEST-EM). (Recall, this loss accounts for the fact that there may be more than
one preimage leading to a valid key.) Lemma 7 gives a tight bound on the former,
depending on the number of blocks β,16 while Theorem 6 shows that Even-Mansour
incurs a factor 2 security loss in the ideal cipher model. We therefore compute our
final bit security estimates for the OWFs in FAEST and FAEST-EM, respectively, as

κ = log
2λCf,s′

(1 +Bβ
|K|

2128β)(Ske + Senc)
, κEM = log

2λCf,s′

2(Ske + Senc)

Here, we have additionally divided by Ske + Senc, the number of S-boxes in one
evaluation of AES-λ, to obtain a cost metric based on AES-λ evaluations. Con-
cretely, our κ-bit security estimate means that, in the above strategy, the success
probability of an attacker performing work equivalent to q AES-λ evaluations is at
most q/2κ. Note that under the same metric, encryption under standard AES-λ has
λ-bit security.

10.3.5 Security margin of OWF instantiations. We argued earlier that
choosing an AES-based OWF is conservative. Here, we study the security margin of
our two OWF instantiations in more detail.

When cryptanalysts cannot break a full version of a block cipher such as AES,
variants with a reduced number of rounds are considered. The gap between the
number of rounds that can be attacked and the number of rounds of the full version
is considered a security margin, a buffer that may help to defend against yet unknown
attack vectors.

Key recovery attacks on AES. There are no known key-recovery shortcut attacks
that work with a single (plaintext, ciphertext) pair except variants of brute-force
key search. The best known attack on round-reduced variants of AES in this class

16When using the bound in Lemma 7, we ignore the small additive term that does not depend
on the PRP.

Top of Section 10 87 Table of Contents

is from more than 10 years ago, given by Bouillaguet, Derbez and Fouque [BDF11],
applied to 4-round AES and is marginal, costing 2120 time and 280 memory.

Key recovery attacks on EM-AES. There are no known key-recovery shortcut at-
tacks that work with a single (plaintext, ciphertext) pair except variants of brute-
force key search, also not shortcut attacks on variants with less rounds. In absence
of key recovery attacks, it is instructive to look at cryptanalytic results on AES that
allow to distinguish the fixed-key AES permutation from random. For 5-round AES,
a distinguisher [GRR17] that requires 232 (plaintext, ciphertext) pairs and works for
any key is known. Subsequently, for a setting giving more possibilities to an attacker,
(adaptively chosen ciphertexts) this got improved in [BR19b] and to 6-rounds AES
in [BR19a]).

In conclusion, the issue of how the EM and non-EM one-way functions compare
for AES in terms of security margin is an interesting open question. Removing the
constraint imposed by the OWF (only a single input/output pair available to an
attacker) gives an upper bound on the security margin. Using the example of AES-
128 with 10 rounds, the best key recovery attacks are on 7 rounds [DFJ13, BR22]
(or 8 rounds if time-complexity close to brute-force is included [BKR11]), and the
best permutation distinguishers reach up to 6 rounds [GRR17, BR19a].

11 Advantages and Limitations

11.1 Advantages

Minimal security assumptions. FAEST uses only symmetric primitives, with
security relying on the already standard assumptions about the one-wayness and
pseudo-randomness of AES, and collision-resistance and random oracle-like prop-
erties of the SHA3 hash function family. In particular, FAEST does not need any
structured or novel assumptions, and is fairly straightforward to analyze against
concrete attacks.

Good, general-purpose performance. Overall, FAEST has good performance
across public key and signature sizes, signing speed and verification speed. This
makes it a strong candidate for general-purpose use, for instance, in real-time pro-
tocols like TLS as well as more static use-cases like code signing. Compared with
hash-based signatures like SPHINCS+, based on similarly conservative assumptions,
FAEST enjoys much faster signing and smaller signatures.

Small key sizes. FAEST has very small keys, with secret keys of size 16–32 bytes
and public keys 32–64 bytes. This makes the combined size of a public key and sig-
nature fairly small, for example, 5038 bytes at category 1. This metric is particularly
important to optimize in applications like certificates.

Modularity. FAEST uses a modular design with several independent building
blocks. The PRGs or hash functions can easily be swapped out with alternatives
that may improve performance, or security in case of an unexpected weakness in
one of the primitives. Moreover, using one-way functions other than AES in the
zero-knowledge proof system can lead to different tradeoffs in terms of performance
and assumptions.

Top of Section 11 88 Table of Contents

Performance trade-offs. FAEST provides a large amount of flexibility in terms
of different parameters settings. While this document only specifies two parameter
settings for each security level, further choices are possible that give a larger range
of performance tradeoffs between signature size and signing/verification speed.

Security proof. FAEST has a security proof in the ROM, via a reduction to the
security of the underlying primitives. Although the proof is not fully tight, due to a
multiplicative factor in the number of signing queries, this provides strong evidence
of security for FAEST. We also give a natural conjecture that would lead to a proof
of security in the QROM.

11.2 Limitations

Verification speed. Despite the overall good performance, FAEST has slightly
slower verification compared with SPHINCS+, which may make it less desirable in
applications where verification is performed much more often than signing. How-
ever, this is less significant compared with the improvements in both signing time
and signature size.

Signature sizes. While FAEST signatures are very small amongst signature schemes
based on symmetric primitives, they are still somewhat larger than lattice-based sig-
nature schemes like Dilithium and FALCON. This may make it less suitable in a
setting where transmitting signatures is the bottleneck in a network.

References

ABKM22. Gorjan Alagic, Chen Bai, Jonathan Katz, and Christian Majenz. Post-quantum secu-
rity of the even-mansour cipher. In Orr Dunkelman and Stefan Dziembowski, editors,
EUROCRYPT 2022, Part III, volume 13277 of LNCS, pages 458–487. Springer, Hei-
delberg, May / June 2022.

AES01. Advanced Encryption Standard (AES). National Institute of Standards and Technol-
ogy, NIST FIPS PUB 197, U.S. Department of Commerce, November 2001.

BBD+23. Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß,
Emmanuela Orsini, Lawrence Roy, and Peter Scholl. Publicly verifiable zero-knowledge
and post-quantum signatures from vole-in-the-head. In CRYPTO. Springer, 2023.

BCG+19. Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal,
and Peter Scholl. Efficient two-round OT extension and silent non-interactive secure
computation. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019, pages 291–308. ACM Press, November 2019.

BCGI18. Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector OLE.
In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM
CCS 2018, pages 896–912. ACM Press, October 2018.

BDF11. Charles Bouillaguet, Patrick Derbez, and Pierre-Alain Fouque. Automatic search
of attacks on round-reduced AES and applications. In Phillip Rogaway, editor,
CRYPTO 2011, volume 6841 of LNCS, pages 169–187. Springer, Heidelberg, August
2011.

BDK+21. Carsten Baum, Cyprien Delpech de Saint Guilhem, Daniel Kales, Emmanuela Orsini,
Peter Scholl, and Greg Zaverucha. Banquet: Short and fast signatures from AES. In
Juan Garay, editor, PKC 2021, Part I, volume 12710 of LNCS, pages 266–297. Springer,
Heidelberg, May 2021.

BGI14. Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudoran-
dom functions. In Hugo Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages
501–519. Springer, Heidelberg, March 2014.

89 Table of Contents

BJKS94. Jürgen Bierbrauer, Thomas Johansson, Gregory Kabatianskii, and Ben Smeets. On
families of hash functions via geometric codes and concatenation. In Douglas R. Stinson,
editor, CRYPTO’93, volume 773 of LNCS, pages 331–342. Springer, Heidelberg, August
1994.

BKR11. Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique crypt-
analysis of the full AES. In Dong Hoon Lee and Xiaoyun Wang, editors, ASI-
ACRYPT 2011, volume 7073 of LNCS, pages 344–371. Springer, Heidelberg, December
2011.

BMRS21. Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter Scholl. Mac’n’cheese:
Zero-knowledge proofs for boolean and arithmetic circuits with nested disjunctions.
In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of
LNCS, pages 92–122, Virtual Event, August 2021. Springer, Heidelberg.

BR19a. Navid Ghaedi Bardeh and Sondre Rønjom. The exchange attack: How to distinguish
six rounds of AES with 288.2 chosen plaintexts. In Steven D. Galbraith and Shiho
Moriai, editors, ASIACRYPT 2019, Part III, volume 11923 of LNCS, pages 347–370.
Springer, Heidelberg, December 2019.

BR19b. Navid Ghaedi Bardeh and Sondre Rønjom. Practical attacks on reduced-round AES.
In Johannes Buchmann, Abderrahmane Nitaj, and Tajje eddine Rachidi, editors,
AFRICACRYPT 19, volume 11627 of LNCS, pages 297–310. Springer, Heidelberg,
July 2019.

BR22. Navid Ghaedi Bardeh and Vincent Rijmen. New key-recovery attack on reduced-round
AES. IACR Trans. Symm. Cryptol., 2022(2):43–62, 2022.

BW13. Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applica-
tions. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part II, volume
8270 of LNCS, pages 280–300. Springer, Heidelberg, December 2013.

CCH+19. Ran Canetti, Yilei Chen, Justin Holmgren, Alex Lombardi, Guy N. Rothblum, Ron D.
Rothblum, and Daniel Wichs. Fiat-Shamir: from practice to theory. In Moses Charikar
and Edith Cohen, editors, 51st ACM STOC, pages 1082–1090. ACM Press, June 2019.

CDG+17. Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi, Sebastian Ramacher,
Christian Rechberger, Daniel Slamanig, and Greg Zaverucha. Post-quantum zero-
knowledge and signatures from symmetric-key primitives. In Bhavani M. Thurais-
ingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages
1825–1842. ACM Press, October / November 2017.

CFHL21. Kai-Min Chung, Serge Fehr, Yu-Hsuan Huang, and Tai-Ning Liao. On the compressed-
oracle technique, and post-quantum security of proofs of sequential work. In Anne
Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021, Part II, volume
12697 of LNCS, pages 598–629. Springer, Heidelberg, October 2021.

CMS19. Alessandro Chiesa, Peter Manohar, and Nicholas Spooner. Succinct arguments in the
quantum random oracle model. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019,
Part II, volume 11892 of LNCS, pages 1–29. Springer, Heidelberg, December 2019.

CW79. Larry Carter and Mark N. Wegman. Universal classes of hash functions. J. Comput.
Syst. Sci., 18(2):143–154, 1979.

DDOS19. Cyprien Delpech de Saint Guilhem, Lauren De Meyer, Emmanuela Orsini, and Nigel P.
Smart. BBQ: Using AES in picnic signatures. In Kenneth G. Paterson and Douglas Ste-
bila, editors, SAC 2019, volume 11959 of LNCS, pages 669–692. Springer, Heidelberg,
August 2019.

DFJ13. Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. Improved key recovery attacks
on reduced-round AES in the single-key setting. In Thomas Johansson and Phong Q.
Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 371–387. Springer,
Heidelberg, May 2013.

DFM20. Jelle Don, Serge Fehr, and Christian Majenz. The measure-and-reprogram technique
2.0: Multi-round fiat-shamir and more. In Daniele Micciancio and Thomas Ristenpart,
editors, CRYPTO 2020, Part III, volume 12172 of LNCS, pages 602–631. Springer,
Heidelberg, August 2020.

DFMS22. Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Online-extractability
in the quantum random-oracle model. In Orr Dunkelman and Stefan Dziembowski,
editors, EUROCRYPT 2022, Part III, volume 13277 of LNCS, pages 677–706. Springer,
Heidelberg, May / June 2022.

DIO21. Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-point zero knowledge and its
applications. In 2nd Conference on Information-Theoretic Cryptography (ITC 2021).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

90 Table of Contents

DKR+22. Christoph Dobraunig, Daniel Kales, Christian Rechberger, Markus Schofnegger, and
Greg Zaverucha. Shorter signatures based on tailor-made minimalist symmetric-key
crypto. In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM
CCS 2022, pages 843–857. ACM Press, November 2022.

DKS12. Orr Dunkelman, Nathan Keller, and Adi Shamir. Minimalism in cryptography: The
Even-Mansour scheme revisited. In David Pointcheval and Thomas Johansson, editors,
EUROCRYPT 2012, volume 7237 of LNCS, pages 336–354. Springer, Heidelberg, April
2012.

DN19. Itai Dinur and Niv Nadler. Multi-target attacks on the Picnic signature scheme and
related protocols. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019,
Part III, volume 11478 of LNCS, pages 699–727. Springer, Heidelberg, May 2019.

DR98. Joan Daemen and Vincent Rijmen. The block cipher rijndael. In Jean-Jacques
Quisquater and Bruce Schneier, editors, Smart Card Research and Applications, This
International Conference, CARDIS ’98, Louvain-la-Neuve, Belgium, September 14-16,
1998, Proceedings, volume 1820 of Lecture Notes in Computer Science, pages 277–284.
Springer, 1998.

DR02. Joan Daemen and Vincent Rijmen. The design of Rijndael: AES — the Advanced
Encryption Standard. Springer-Verlag, 2002.

EM97. Shimon Even and Yishay Mansour. A construction of a cipher from a single pseudo-
random permutation. Journal of Cryptology, 10(3):151–162, June 1997.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of
LNCS, pages 186–194. Springer, Heidelberg, August 1987.

GGM84. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions (extended abstract). In 25th FOCS, pages 464–479. IEEE Computer Society
Press, October 1984.

GHHM21. Alex B. Grilo, Kathrin Hövelmanns, Andreas Hülsing, and Christian Majenz. Tight
adaptive reprogramming in the QROM. In Mehdi Tibouchi and Huaxiong Wang,
editors, ASIACRYPT 2021, Part I, volume 13090 of LNCS, pages 637–667. Springer,
Heidelberg, December 2021.

GLNP15. Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. Fast garbling of circuits
under standard assumptions. In Indrajit Ray, Ninghui Li, and Christopher Kruegel,
editors, ACM CCS 2015, pages 567–578. ACM Press, October 2015.

GRR17. Lorenzo Grassi, Christian Rechberger, and Sondre Rønjom. A new structural-
differential property of 5-round AES. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 289–317. Springer,
Heidelberg, April / May 2017.

IKNP03. Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–161.
Springer, Heidelberg, August 2003.

IKOS07. Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from
secure multiparty computation. In David S. Johnson and Uriel Feige, editors, 39th
ACM STOC, pages 21–30. ACM Press, June 2007.

KPTZ13. Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias.
Delegatable pseudorandom functions and applications. In Ahmad-Reza Sadeghi, Vir-
gil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 669–684. ACM Press,
November 2013.

LLH20. Zhengrui Li, Sian-Jheng Lin, and Yunghsiang S. Han. On the exact lower bounds of en-
coding circuit sizes of hamming codes and hadamard codes. In 2020 IEEE International
Symposium on Information Theory (ISIT), pages 2831–2836, 2020.

MS04. Alfred Menezes and Nigel Smart. Security of signature schemes in a multi-user setting.
Designs, Codes and Cryptography, 33(3):261–274, 2004.

Roy22. Lawrence Roy. SoftSpokenOT: Quieter OT extension from small-field silent VOLE
in the minicrypt model. In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part I, volume 13507 of LNCS, pages 657–687. Springer, Heidelberg,
August 2022.

Ser98. Gadiel Seroussi. Table of low-weight binary irreducible polynomials. Technical Re-
port HPL-98-135, Hewlett Packard Laboratories, 1998. https://www.hpl.hp.com/

techreports/98/HPL-98-135.pdf.
Sti92. Douglas R. Stinson. Universal hashing and authentication codes. In Joan Feigenbaum,

editor, CRYPTO’91, volume 576 of LNCS, pages 74–85. Springer, Heidelberg, August
1992.

91 Table of Contents

https://www.hpl.hp.com/techreports/98/HPL-98-135.pdf
https://www.hpl.hp.com/techreports/98/HPL-98-135.pdf

TE76. R. E. Twogood and M. P. Ekstrom. An extension of Eklundh’s matrix transposition
algorithm and its application in digital image processing. IEEE Transactions on Com-
puters, C-25(9):950–952, 1976.

Unr17. Dominique Unruh. Post-quantum security of Fiat-Shamir. In Tsuyoshi Takagi and
Thomas Peyrin, editors, ASIACRYPT 2017, Part I, volume 10624 of LNCS, pages
65–95. Springer, Heidelberg, December 2017.

WYKW21. Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolverine: Fast, scalable,
and communication-efficient zero-knowledge proofs for boolean and arithmetic circuits.
In 2021 IEEE Symposium on Security and Privacy, pages 1074–1091. IEEE Computer
Society Press, May 2021.

YSWW21. Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. QuickSilver: Efficient
and affordable zero-knowledge proofs for circuits and polynomials over any field. In
Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 2986–3001. ACM Press,
November 2021.

ZCD+20. Greg Zaverucha, Melissa Chase, David Derler, Steven Goldfeder, Claudio Or-
landi, Sebastian Ramacher, Christian Rechberger, Daniel Slamanig, Jonathan
Katz, Xiao Wang, Vladmir Kolesnikov, and Daniel Kales. Picnic. Tech-
nical report, National Institute of Standards and Technology, 2020. avail-
able at https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions.
Zha19. Mark Zhandry. How to record quantum queries, and applications to quantum indiffer-

entiability. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019,
Part II, volume 11693 of LNCS, pages 239–268. Springer, Heidelberg, August 2019.

92 Table of Contents

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

A Finite Field Generator Elements

Below, we specify the generators of F28 we use when lifting to each of the fields
F2128 ,F2192 and F2256 using ByteCombine. We first give the hexadecimal representa-
tion in little-endian order, followed by the human-readable polynomial. The gener-
ators were obtained using SageMath.
F2128 :

{0x0d, 0xce, 0x60, 0x55, 0xac, 0xe8, 0x3f, 0xa1,

0x1c, 0x9a, 0x97, 0xa9, 0x55, 0x85, 0x3d, 0x05}

z122 + z120 + z117 + z116 + z115 + z114 + z112 + z111 + z106 + z104 + z102 + z100+

z98 + z96 + z95 + z93 + z91 + z88 + z87 + z84 + z82 + z81 + z80 + z79 + z76 + z75+

z73 + z68 + z67 + z66 + z63 + z61 + z56 + z53 + z52 + z51 + z50 + z49 + z48 + z47+

z46 + z45 + z43 + z39 + z37 + z35 + z34 + z30 + z28 + z26 + z24 + z22 + z21 + z15+

z14 + z11 + z10 + z9 + z3 + z2 + 1

F2192 :

{0x63, 0x97, 0x38, 0x6f, 0xd5, 0xa3, 0xc8, 0xcc,

0xea, 0xbd, 0x6e, 0x96, 0x6c, 0xd7, 0x65, 0xe6,

0x62, 0x36, 0x6b, 0x0e, 0x14, 0xc8, 0x0b, 0x31}

z189 + z188 + z184 + z179 + z177 + z176 + z175 + z174 + z171 + z164 + z162 + z155+

z154 + z153 + z150 + z149 + z147 + z145 + z144 + z141 + z140 + z138 + z137 + z134+

z133 + z129 + z127 + z126 + z125 + z122 + z121 + z118 + z117 + z114 + z112 + z111+

z110 + z108 + z106 + z105 + z104 + z102 + z101 + z99 + z98 + z95 + z92 + z90 + z89+

z86 + z85 + z83 + z82 + z81 + z79 + z77 + z76 + z75 + z74 + z72 + z71 + z70 + z69+

z67 + z65 + z63 + z62 + z59 + z58 + z55 + z54 + z51 + z47 + z45 + z41 + z40 + z39+

z38 + z36 + z34 + z32 + z30 + z29 + z27 + z26 + z25 + z24 + z21 + z20 + z19 + z15+

z12 + z10 + z9 + z8 + z6 + z5 + z + 1

F2256 :

{0xe7, 0xfe, 0xde, 0x0b, 0x42, 0x88, 0x97, 0x96,

0x67, 0x4e, 0x47, 0xa0, 0x38, 0x8d, 0xd6, 0xbe,

0x6a, 0xe1, 0xf1, 0xf8, 0x45, 0x98, 0x22, 0xdf,

0x33, 0x58, 0xc9, 0x20, 0xcf, 0xa8, 0xc9, 0x04}

z250 + z247 + z246 + z243 + z240 + z239 + z237 + z235 + z231 + z230 + z227 + z226+

z225 + z224 + z221 + z215 + z214 + z211 + z208 + z206 + z204 + z203 + z197 + z196+

z193 + z192 + z191 + z190 + z188 + z187 + z186 + z185 + z184 + z181 + z177 + z175+

z172 + z171 + z166 + z162 + z160 + z159 + z158 + z157 + z156 + z155 + z151 + z150+

z149 + z148 + z144 + z143 + z142 + z141 + z136 + z134 + z133 + z131 + z129 + z127+

z125 + z124 + z123 + z122 + z121 + z119 + z118 + z116 + z114 + z113 + z111 + z107+

z106 + z104 + z101 + z100 + z99 + z95 + z93 + z86 + z82 + z81 + z80 + z78 + z75+

z74 + z73 + z70 + z69 + z66 + z65 + z64 + z63 + z60 + z58 + z57 + z55 + z52 + z50+

z49 + z48 + z47 + z43 + z38 + z33 + z27 + z25 + z24 + z23 + z22 + z20 + z19 + z18+

z17 + z15 + z14 + z13 + z12 + z11 + z10 + z9 + z7 + z6 + z5 + z2 + z + 1

93 Table of Contents

94 Table of Contents

	FAEST: Algorithm Specifications
	Introduction
	Overview of Algorithms and Main Parameters
	Main Parameters
	Overview of VOLE-in-the-Head and VOLE Commitments
	QuickSilver: a VOLE-based Zero-Knowledge Proof System

	Preliminaries
	Notation
	Data Types and Conversions
	Cryptographic Primitives
	Security Definitions

	Additional Building Blocks
	AES and Rijndael
	Universal Hashing

	VOLE-in-the-Head Functions
	All-but-One Vector Commitments
	Seed Expansion and Conversion to VOLE
	VOLEitH: Commitment and Reconstruction

	AES Functions
	Witness Extension
	Deriving Constraints for the Key Expansion Routine
	Deriving Constraints for the Encryption Routine
	Proving and Verifying AES Constraints

	 Rijndael-EM Functions
	Witness Extension
	Deriving Constraints for the Encryption Routine
	Proving and Verifying Rijndael-EM Constraints

	The FAEST Signature Scheme
	Key Generation
	Signing
	Verification

	Performance Analysis
	Security Evaluation
	Provable Security
	Concrete Attacks
	Concrete Analysis of AES as a OWF

	Advantages and Limitations
	Advantages
	Limitations

	Finite Field Generator Elements

