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1 Introduction

This document describes and specifies version 2 of the FAEST digital signature algorithm.
It presents the underlying cryptographic components and specifies the building blocks used
to construct the FAEST algorithm.

The design of FAEST is intended to provide security against attacks by quantum com-
puters by relying only on information-theoretic and symmetric-key cryptographic primi-
tives. In particular, in addition to the standard SHA3 hash function, the security of FAEST
is tightly linked to the security of AES128, AES192 and AES256, based on which the NIST
security categories 1, 3, and 5 are defined.

Overview. A key pair (pk, sk) for the FAEST signature algorithm is defined as pk = (x, y)
and sk = k such that Ek(x) = y, where E is a block cipher-based encryption function, k
is a secret key and x is a plaintext for E. The signature is derived from a non-interactive
argument of knowledge of sk, similarly to other post-quantum signature algorithms such
as Picnic [CDG+17, ZCD+20] or Banquet [BDK+21]. However, the argument system used
in FAEST is not constructed in the MPC-in-the-Head (MPCitH) framework [IKOS07], but
using a new tool called VOLE-in-the-Head (VOLEitH)11 [BBD+23b] which enables the
use of efficient VOLE-based proof systems.

There is some similarity between the VOLEitH technique and MPCitH constructions
such as Picnic, for instance, both can be seen as initially creating an N -out-of-N secret
sharing of the witness for the zero-knowledge proof. However, the zero-knowledge proof
phase of a VOLEitH construction like FAEST is very different, and not based on MPC
(multi-party computation). Instead, VOLEitH is closer to secure two-party computation,
since VOLE is a two-party primitive, and also relies on techniques from other two-party
protocols such as oblivious transfer extension [IKNP03, Roy22].

To construct the FAEST signature algorithm, the interactive argument system resulting
from combining VOLEitH with a variant of the QuickSilver information-theoretic proof
system [YSWW21] is made non-interactive by the Fiat–Shamir transform [FS87]. Two
security proofs are presented, one in the random oracle model (ROM) and one in the
quantum-accessible ROM (QROM). The ROM proof has a modular structure and models
FAEST as closely as possible. The QROM proof is less modular by necessity, and gives up
on faithfully modeling one detail of FAEST. The QROM proof yields a bound that gives
meaningful concrete security guarantees against quantum adversaries. Up to the expected
speed-ups due to quantum search, collision-finding and any additional known algorithm,
it is similar to the ROM bound. This is achieved by employing a lossy-key argument
and round-by-round soundness, avoiding the security loss associated with most extraction
techniques for the Fiat Shamir transformation. The ROM proof, using the coarse-grained
attack complexity measure of query complexity, provides a bound on the number of queries
necessary to break FAEST that is close to the bit security target. Accepting the premise of
the ROM, this implies that FAEST provably reaches its main goal of existential unforge-
ability against chosen message attacks.

Design choices. In addition to the VOLEitH construction, the main design choices made
for the FAEST algorithm were:

– Using QuickSilver as the information-theoretic proof system.
– Instantiating E with the standardized primitive of AES [AES01].
– A specialized set of degree-3 constraints for proving AES inside QuickSilver.
– Customized PRG-based commitment schemes for committing to pseudorandom values,

which are cheaply instantiated using AES.

11VOLE stands for vector oblivious linear evaluation.
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This document also specifies alternative variants for security categories 1, 3 and 5,
called FAEST-EM, based on the Even-Mansour construction, which improve performance
through a less standard use of either AES or its precursor Rijndael.

Hardness assumptions. Other than the encryption algorithm E, the security of FAEST
relies on the security of the VOLEitH construction and of the QuickSilver protocol. Since
the first is constructed only from symmetric-key primitives (PRGs and hash functions),
and the second is information-theoretically secure, the EUF-CMA security of FAEST does
not require any number theoretic or other structured hardness assumptions. As mentioned
above, our security proofs also rely on the random oracle model; while this is an idealized
model, it is widely accepted in the cryptographic community as a reasonable way to model
security when other methods are not available.

In FAEST-EM, one-wayness of the function E is based on the Even-Mansour construc-
tion, which requires the assumption that AESx(k)⊕k is hard to invert, where x is a public
AES key and k a secret input to the block cipher. Additionally, to optimize the PRG-
based commitments, FAEST-EM relies on an assumption related to the collision-resistance
of 2λ-bit AES outputs, where λ is the security parameter.

Outline of this document. Section 2 provides a detailed overview of FAEST, the VOLEitH
tool and the QuickSilver proof system. In Section 3, we present the main FAEST and
FAEST-EM parameter sets, and some preliminaries for this document: the notation, the
data types and their conversions, and the elementary cryptographic primitives. Section 4
describes two additional components: the AES and Rijndael algorithms and universal
hashing algorithms.

After these introductory sections, the document specifies the FAEST signature algo-
rithm. Section 5 specifies the VOLEitH construction. Section 6 specifies the computation of
the zero-knowledge proof for the AES and Rijndael circuits used in FAEST and FAEST-EM.
Section 7 specifies the key generation, signing and verification algorithms.

The final part of this document analyses the FAEST signature algorithm. Section 8
provides the performance results of the implementations. Section 9 provides both a formal
proof as well as an analysis of the concrete attacks that are relevant to the building blocks
of FAEST. Section 10 discusses the advantages and limitations provided by the algorithm.

1.1 Changelog

FAEST version 2 has undergone several changes to improve performance and security,
compared with the first version. The most significant of these are:

– An optimized batch, all-but-one vector commitment construction using GGM trees,
based on [BBM+24]. This reduces the size of the vector commitment openings, while
incorporating a ‘grinding’ optimization when computing Fiat-Shamir challenges to
reduce signature size.

– When committing to the leaves of the GGM trees, we now use PRG-based commitments
instead of hash-based commitments in version 1. This reduces signing and verification
time, for which the leaf commitments are a bottleneck.

– A new method of proving AES inside QuickSilver, using degree-3 constraints derived
through finite field norms. As well as reducing the proof size compared with the pre-
vious, degree-2 constraints, this removes the restriction that every S-box input must
be non-zero.

Other, minor tweaks to the algorithms are as follows:
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– Each use of AES-CTR within a different part of the signing algorithm now uses a
distinct IV, derived from the per-signature IV. This improves concrete security by
preventing preprocessing attacks.

– The key generation now uses CTR mode instead of ECB mode, for the 192- and 256-bit
variants where two AES blocks are required.

– The key generation now requires the first two bits of the secret key are not both one.
This allows for a classical and quantum security proof of FAEST when using the new
leaf commitments.

– The per-signature IV is now passed through a hash function (modeled as a random
oracle). This is used in the security analysis of the leaf commitments.

– A detailed security argument in the Quantum Random Oracle Model is provided.
– ...

In addition to the above tweaks, the security proofs of use a different strategy, which
is needed to obtain a reduction when using the new leaf commitments (which do not allow
for extraction, unlike the previous random oracle commitments). Furthermore, to improve
readability, various improvements have been made to notation and the write-up of this
document.

2 Overview of Algorithms

This section gives a high-level overview of the main algorithms used for the FAEST signa-
ture scheme.

2.1 VOLE and VOLE-in-the-Head

Let λ be the security parameter. FAEST uses VOLE correlations over the finite field F2λ

as a form of linearly homomorphic commitment scheme. A VOLE (vector oblivious linear
evaluation) correlation of length ℓ is defined by a set of random bits ui ∈ F2 and random
field elements vi ∈ F2λ , together with a random global key ∆ ∈ F2λ and local keys qi ∈ F2λ ,
such that:12

qi = ui ·∆+ vi for i = 0, . . . , ℓ− 1. (1)

The values ui and vi should be known only to the prover (in FAEST, the signer), while qi
and ∆ should be given to the verifier.

This can be seen as committing the prover to the random bits ui via a linearly ho-
momorphic commitment scheme. The scheme is hiding, because the random vi mask
ui in the verifier’s values qi, and the scheme is binding, because opening to a different
value u′i requires the prover to come up with a tag v′i = qi − u′i∆, but then the prover
would have successfully guessed ∆ = (vi − v′i)/(u

′
i − ui), which can only happen with

probability 2−λ. The linearity of Equation (1) implies that the commitments are lin-
early homomorphic, a particularly useful property for building efficient zero-knowledge
proofs [WYKW21, YSWW21, BMRS21].

A VOLE correlation can be created with a secure two-party protocol [BCGI18, BCG+19,
WYKW21, Roy22]; in FAEST, however, since we want to obtain zero-knowledge proofs and
signatures that are publicly verifiable, we instead use the VOLEitH technique [BBD+23b].
Here, the prover first generates its values ui, vi and commits to them using a special type
of VOLE commitment. The commitment is set up such that the verifier can later send to
the prover the random key ∆, after which, the prover can send an opening that allows the
verifier to learn its qi values, satisfying Equation (1), and nothing more.

12This is technically a subfield VOLE, since the ui’s are restricted to be in F2, a subfield of F2λ .
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Note. It is important that ∆ is only given to the signer after running the main steps
of the zero-knowledge proof, since as soon as ∆ is known, the binding property of the
homomorphic commitments is trivially broken.

Generating VOLE Commitments. Instead of directly generating VOLE correlations
over F2λ , VOLEitH first generates several VOLE instances over two smaller finite fields
F2k0 and F2k1 . If we create τ0 VOLEs in the k0-bit field and τ1 in the k1-bit field, then we
want to set the parameters such that

τ0k0 + τ1k1 = λ

This ensures that, if the small VOLEs are set up such that the signer is committed to
the same u vector in each instance, then they can be concatenated to build a final VOLE
correlation in F2λ .

In the following, we use k to denote the bit-length of the small field (which will be
either k0 or k1) and let N = 2k.

All-but-One Vector Commitments. The main building block of our VOLEitH approach
is the technique of committing to a vector of N pseudo-random seeds by deriving them
from a tree of length-doubling PRGs. This is also known as the GGM construction, which
builds a puncturable PRF from a PRG [GGM84, KPTZ13, BW13, BGI14]. This can be
used to build an all-but-one vector commitment scheme, where the signer commits to N
seeds by sending a single hash value, and can later open N−1 of them with only O(logN)
communication. In what follows, we describe a variant that yields a batch of τ all-but-one
vector commitments.

The idea of the construction is to build a complete binary tree with L leaves, where,
starting at the root node with a random seed r, the two children of any node are defined by
evaluating the parent seed with a length-doubling PRG that outputs two new seeds. After
expanding the tree, we obtain L leaf values, ki, each of which is used as randomness in a
LeafCommit algorithm, to derive a new value sdi and commitment comi. The seed sdi is the
i-th committed seed, which will later be expanded and used as part of a small-field VOLE,
while comi serves as a commitment to the seed. Finally, to create a succinct commit to all
of the seeds, the signer applies a hash function (modelled as a random oracle) to all the
comi’s.

We view the above as a commitment to τ vectors of length N , where L = τ ·N , by the
following ordering:

To open all-but-τ of the seeds, the signer defines the set of tree nodes S such that the
leaves that are descendants of any node in S correspond exactly to the L − τ seeds to
be opened. The signer then sends over the nodes in S to the verifier, together with the
leaf commitment values comi for the τ unopened nodes. The verifier can then reconstruct
exactly the L − τ seeds. Furthermore, by recomputing the LeafCommit values for the
leaves it knows, it can check the original commitment by recomputing the hash of all leaf
commitments.

We note that the size of the set S varies depending on the positions of the unopened
nodes. If τ = 1, S consists of the siblings of all nodes on the path from the root to the
unopened leaf (excluding the root node), so has size ⌈logL⌉. In general, when τ > 1,
the size of the opening depends on how much overlap there is among the paths to the
unopened leaves; the more overlap there is, the smaller S gets.

Optimization 1: Rejection Sampling for the Opening. In the FAEST interactive argument,
the τ unopened indices are sampled as a random challenge by the verifier. To reduce the
size of S, we have the prover reject the challenge whenever the opening size exceeds a
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certain threshold, Topen, and request a new challenge from the verifier. Note that, after
applying Fiat-Shamir, this rejection is done entirely by the prover, by incrementing a
counter and computing a new hash value for each attempt at obtaining a challenge.

This modification allows to significantly reduce the opening size, at a small extra cost
of the prover computing some additional hash values. Furthermore, despite the apparent
reduction in the size of the challenge space, this optimization does not affect the security
of FAEST. Each challenge is still sampled from the same domain as before, just rejected
with some small probability. Even if the prover can predict ahead of time which challenges
will be rejected, it still has to recompute the hash value for each challenge attempt, and
each such attempt has exactly the same chance of being a “bad” challenge (that is, one
that allows it to cheat) as previously.

Optimization 2: PRG-Based Leaf Commitments. In version 1 of FAEST, the leaf commit-
ments were computed using the SHAKE hash function. Because of the large number of
leaves, this turned out to be one of the dominant costs in signing and verification time.
To reduce this cost, instead of using SHAKE, we use PRG-based commitments, which can
be instantiated efficiently with AES. We propose two instantiations, which (simplifying
slightly) are as follows:

LeafCommitu(r) = (sd, c) = (PRG4λ(r)[0]︸ ︷︷ ︸
=sd

, sd · u+ PRG4λ(r)[1..3])

LeafCommit(r) = (sd, c) = (r, PRG2λ(r))

In the first version, the committed seed is the first λ-bit block of a 4-block output of a
PRG applied to the randomness r. The commitment, c, which can be seen as a variant of
Naor’s commitment [Nao91, MRZ15], uses a public, random 3λ-bit string u, then performs
an F23λ field multiplication of sd with u, before XORing with the remaining randomness
output by the PRG. The commitment is easily seen to be computationally hiding, due to
the pseudorandomness of the PRG. The construction is also statistically binding, because
finding two openings r, r′ that are valid for the same c would imply

sd · u+ PRG(r) = sd′ · u+ PRG(r′)

and hence, u = (PRG(r′)−PRG(r))/(sd′− sd). Since r, r′ are each λ bits long, and entirely
determine sd, sd′, this leaves only 22λ possible values of u for which such a binding break
exists. Hence, if u is a uniform 3λ-bit string, the PRG is perfectly binding except with
probability 2−λ.

In the second version, the commitment to seed r is simply a 2λ bit PRG output
applied to r. This results in a more efficient and smaller commitment, but now relies on
the hardness of finding two different λ-bit seeds that map to the same 2λ PRG output.
While there are no known attacks better than standard collision attacks when instantiating
the PRG with AES, this is a slightly non-standard assumption.13 We use this version in
the FAEST-EM variants.

The formal pseudocode for the batch vector commitment and leaf commitment proce-
dures is given in Section 5.2, and their security is analyzed in Section 9.4.

From Batch Vector Commitments to VOLE. An all-but-one vector commitment of length
N = 2k can be used to obtain a VOLE commitment in a finite field F2k . If the signer
holds N committed seeds sd0, . . . , sdN−1, it first expands them using a PRG, to obtain N
strings r0, . . . , rN−1 ∈ {0, 1}ℓ. Then, it computes, in F2k ,

13In our security proofs, we actually rely on a stronger assumption which allows the IV defining the
AES-based PRG to be switched into a “perfectly binding” mode where no collisions exist. For details, we
refer to Section 9.
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u =

N−1∑
i=0

ri, v =

N−1∑
i=0

i · ri

where i is encoded as an element of F2k .
To see how this can be used to get a VOLE correlation, consider a verifier who later

learns seeds sdi for all i ̸= j∗, for some index j∗ ∈ {0, . . . , N − 1} (viewed as an F2k

element). The verifier can compute

q =

N−1∑
i=0

(j∗ − i) · ri

= j∗ ·
N−1∑
i=0

ri −
N−1∑
i=0

i · ri

= j∗ · u− v

giving the desired VOLE in F2k . This step is specified in Section 5.4, which uses an opti-
mized divide-and-conquer algorithm for computing u,v and q with fewer XOR operations.

From τ Small VOLEs to One Big VOLE. After creating the batch vector commitments,
the signer has τ random pairs (ui,Vi), making up its side of the small-field VOLE corre-
lations. Next, the signer must send correction values so that the VOLEs can be fixed to
use the same u value, say, u0, by sending ci = ui − u0, for i = 1 to τ − 1. This allows the
verifier to later adjust its output so that all VOLE relations hold with respect to u0.

Denote the corrected VOLEs as (u,Vi) for i = 0, . . . , τ − 1, where we now view Vi as
a matrix in {0, 1}ℓ×k, instead of a vector in Fℓ

2k
. When the VOLEs are eventually opened,

the verifier will learn (∆i,Qi) such that

Qi = Vi +
(
δ0 · ui · · · δk−1 · ui

)
where δ0, . . . , δk−1 is the bit decomposition of ∆i.

Once this has been done, the parties can simply concatenate the τ VOLE instances,
by forming the ℓ× λ matrices

V =
(
V0 · · ·Vτ−1

)
, Q =

(
Q0 · · ·Qτ−1

)
Viewing the rows V[i],Q[i] of the above as elements of F2λ , these form a VOLE over

F2λ , where the new ∆ value is formed from the bits of each ∆i. That is, we have the
relation:

Q[i] = V[i] + u[i] ·∆

VOLE Consistency Check. Finally, we need a way of ensuring that the signer does not
cheat when sending the correction values: if any ci is wrong, the VOLE relation will be
incorrect and we will not obtain the same guarantees from the ZK proof system. This is
done using the consistency check from [Roy22], where the verifier challenges the signer
to open a random, linear universal hash function applied to u and V. The linear hash
function is represented by a compressing matrix H, and the prover sends

ũ = Hu, Ṽ = HV.

The verifier then computes Q̃ = HQ and checks that the VOLE relation still holds
between ũ, Ṽ and Q̃. The details of the universal hash family we use are given in Sec-
tion 4.3.
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Padding. The above description assumes u is of length ℓ bits, the same as the extended
witness for the OWF relation. In FAEST, we actually run the VOLE commitment on length
ℓ̂ = ℓ+3λ+B, because the VOLE consistency check reveals a (λ+B)-bit linear function
of u to the verifier, which needs to hide the underlying witness. After the check, we discard
the additional bits and use the length ℓ + 2λ VOLE for the ZK proof stage. In the ZK
proof, the first ℓ bits of u are used to commit to the extended witness, while the final 2λ
bits will be used as a mask for a second consistency check as part of QuickSilver.

2.2 ZK Proof Phase Using QuickSilver

After setting up the VOLE correlation, the next step in FAEST is for the signer to run
a variant of the QuickSilver proof system, to prove knowledge of the secret one-way
function key used to generate the public key. QuickSilver, by Yang, Sarkar, Weng and
Wang [YSWW21], is an interactive zero-knowledge proof system that uses VOLE, build-
ing upon the line-point zero-knowledge paradigm of Dittmer et al. [DIO21]. As QuickSilver
is interactive, it is described here as a protocol executed between two parties: a prover and
a verifier. When integrated into the non-interactive FAEST signature scheme, these roles
will be played by the signer and the verifier, respectively.

QuickSilver assumes a VOLE setup, where the prover holds random ui ∈ F2, vi ∈ F2λ

and verifier holds a random key ∆ ∈ F2λ , and qi = ui ·∆+ vi. Given this, the QuickSilver
proof that we compute in the FAEST algorithm proceeds in three main stages.

Witness extension. The prover takes the secret key sk = k, which is the witness for
the QuickSilver relation, as well as the public input pk = (x, y) and executes the AES
operations required to compute Ek(x). During this execution, certain bits related to the
S-box inputs and outputs are recorded into an extended witness, called w ∈ Fℓ

2. (The exact
bits that are recorded are specified in Section 6.5.)

The prover then commits to the extended witness by sending d = u+w to the verifier,
where u ∈ Fℓ

2 is the vector of the prover’s ui values. This allows the verifier to update its
VOLE outputs and learn q′i := qi + di ·∆ = vi + ui ·∆.

Evaluating Constraints. Next, the parties want to evaluate various, low-degree con-
straints on the committed witness. Let the constraints be determined by functions f1, . . . , fC ,
where each function can be represented as a degree-d circuit, and the goal of the proof is
to show that for all i,

fi(w0, . . . , wℓ−1) = 0

To evaluate a constraint function, the parties will evaluate its circuit description in a
gate-by-gate manner. Recall that linear operations can be applied to VOLE commitments
without any interaction, thanks to linearity of the VOLE relation; therefore, addition gates
are straightforward. To handle multiplication gates, the prover views its VOLE outputs
(ui, vi) as the coefficients of a degree-1 polynomial, ρi(X) = uiX + vi. Then, multiplying
two VOLE commitments is done by just multiplying the polynomials, obtain a degree-2
output ρi(X)ρj(X). Meanwhile, the verifier’s qi value equals ρi(∆), so the verifier can
multiply two VOLE values qi and qj by simply computing qi · qj = ρi(∆) · ρj(∆).

This process can continue up to higher degrees, by allowing the degree of the prover’s
polynomials to grow. One thing we have to take of is that when adding two polynomials
of different degrees, they must first be aligned to have the same degree, such that the
“message” is always stored in the highest coefficient.

In FAEST, we use a maximum degree of d = 3. We also use a slight extension of
the above, where we don’t just do addition and multiplication of witness values over F2,
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but will at times lift the committed witness and obtain commitments to F28 elements,
embedded in F2λ .

Proving Constraints (Challenge/Response). After evaluating the C constraint func-
tions, the prover wants to show that each constraint evaluates to zero. The verifier first
sends a random challenge, which can be thought of as a random vector r ∈ FC

2λ
. This is

used to define a single, combined constraint:

f̂ =
∑
i

ri · pi(X) = 0

Both parties can apply this linear combination to their respective values (polynomials
for the prover, or evaluations for the verifier) to obtain a single constraint polynomial to
be checked. Note that since we’re working over a field, it holds that if any of the original
constraints fi were incorrect, then f̂ is also incorrect, except with probability at most 2−λ.

Now, to prove correctness of the degree-d constraint f̂ , the prover could just send over
the coefficients (a0, . . . , ad) of its polynomial, at which point the verifier can check that
ad = 0 and

∑
ai∆

i matches with the evaluation point it computed. If the constraint was
incorrect, then a cheating prover can only pass this check with probability d/2λ, since
there are at most d possible values of ∆ for which the check can pass, each corresponding
to a root of the polynomial with coefficients (a0 + a′0, . . . , ad + a′d), where the a′is are the
coefficients sent by a cheating prover.

Combining the soundness of this check with the random linear combination, we obtain
an overall soundness error of 2−λ + d · 2−λ.

Using Universal Hashes as a Random Linear Combination. Similarly to the VOLE check,
instead of having the verifier choose C random coefficients for its challenge, we use a
universal hash function. This hash must be linear over F2λ , and allows for a smaller
challenge size while preserving the ≈ 2−λ failure probability of the naive method.

Adding Zero-Knowledge. QuickSilver protocol adds one more component to the constraint
check in order to guarantee the zero-knowledge property of the protocol. Indeed, revealing
(a0, . . . , ad) to the verifier leaks information about the circuit values used to compute
them. To prevent this, the prover and the verifier jointly request (d− 1)λ further random
VOLE elements, which are used to mask the check above. Each set of λ VOLEs can be
combined into a single VOLE (ui, vi, qi) where ui is uniform over the field. This can then
be used to mask one of the ai coefficients. Because there are effectively only d−1 unknown
degrees of freedom for the verifier (who knows its evaluation point as well as ad = 0), it
suffices to have d− 1 random mask commitments to ensure zero-knowledge.

2.3 Putting Things Together

In FAEST, VOLE commitments and QuickSilver are combined to form a 3-challenge (or
7-message) interactive argument, for proving knowledge of the one-way function preimage.
This flow is illustrated in Figure 2.1

Transforming the Argument to a Non-Interactive Signature Scheme. To obtain
the final signature scheme, we apply the Fiat-Shamir transformation to make the argument
non-interactive, using a hash function (modelled as a random oracle). This begins by
computing an initial hash µ of the message being signed and other public information.
Then, the prover runs the protocol, but instead of receiving challenges from the verifier,
computes:
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Prover Verifier

VOLE commitment

chall1

VOLE check response +

witness commitment

chall2

ZK constraints response

chall3

VOLE opening

check VOLE and

ZK constraints

Fig. 2.1: Interactive argument used in FAEST

challi = H(challi−1∥msgi)

where msgi is the previous message sent by the prover, and we define chall0 := µ.
Finally, the prover could define the signature onm to be the tuple (msg1,msg2,msg3,msg4),

allowing the verifier to reconstruct all challenges and check the transcript. Instead, we actu-
ally define the signature in a slightly more compact way, as (msg′1,msg′2,msg3,msg4, chall3),
where msg′1 and msg′2 are certain substrings of msg1 and msg2. This still works, because the
missing information in msg1 and msg2 can be reconstructed given chall3 and the VOLE
opening, msg4. Thus, the verifier can still reconstruct a complete transcript, and check
that chall3 matches with the challenge from that transcript to ensure soundness.
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3 Main Parameters and Building Blocks

3.1 FAEST and FAEST-EM Parameter Sets

We let λ denote the computational security parameter. In this section, we describe pa-
rameter sets for FAEST-λ and FAEST-EM-λ for λ ∈ {128, 192, 256} (categories {1, 3, 5}).

To reduce the number of parameters explicitly passed to the algorithms that require
them, we define the following main parameter structure given to all algorithms:

param := (λ, τ, wgrind, Topen, nleafcom, B, ℓ)

These parameters, described in Table 3.1, are sufficient to determine the signature size
and all other parameters in any given FAEST or FAEST-EM instance.

Parameter Description

λ Security parameter in {128, 192, 256}
τ Number of small-VOLE instances

wgrind Grinding parameter: w upper bits of ∆ must be zero

Topen Threshold for the maximum opening size of the GGM tree

nleafcom Number of λ-bit blocks in each leaf commitment

B Extra length padding for the VOLE check

Ek(x) One-way function used to generate the public key

ℓ Witness length for ZK proof (in bits)

Table 3.1: Main parameters for FAEST and FAEST-EM

Scheme OWF Ek(x) ℓ τ wgrind Topen B nleafcom sizes (bytes)

pk sig.

FAEST-128s
AES128k(x)

1280 11 7 102 16 3 32 4 506

FAEST-128f 1280 16 8 110 16 3 32 5 924

FAEST-192s
AES192k(x)∥AES192k(x⊕ 1)

2496 16 12 162 16 3 48 11 260

FAEST-192f 2496 24 8 163 16 3 48 14 948

FAEST-256s
AES256k(x)∥AES256k(x⊕ 1)

3104 22 6 245 16 3 48 20 696

FAEST-256f 3104 32 8 246 16 3 48 26 548

FAEST-EM-128s
AES128x(k)⊕ k

960 11 7 103 16 2 32 3 906

FAEST-EM-128f 960 16 8 112 16 2 32 5 060

FAEST-EM-192s
Rijndael192x(k)⊕ k

1728 16 8 162 16 2 48 9 340

FAEST-EM-192f 1728 24 8 176 16 2 48 12 380

FAEST-EM-256s
Rijndael256x(k)⊕ k

2688 22 6 218 16 2 64 17 984

FAEST-EM-256f 2688 32 8 234 16 2 64 23 476

Table 3.2: One-way functions and parameters for the FAEST-λ and FAEST-EM-λ variants. ℓ is the number
of VOLE correlations required for the ZK proof; τ is the number of repetitions; k (or k − 1) is the bit
length of the small VOLEs; B is a padding parameter affecting security of the VOLE check; nleafcom is the
number of λ-bit blocks in each leaf commitment
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Signature size. Given the main parameters, the signature size (in bits) can be calculated
as follows.

size = τ · (ℓ+ 3λ+B)︸ ︷︷ ︸
witness/mask commitment+
responses to VOLE/ZK checks

+Topen · λ+ nleafcomλτ︸ ︷︷ ︸
GGM tree opening

+ λ︸︷︷︸
∆ challenge

+ 128︸︷︷︸
salt

+ 32︸︷︷︸
counter

3.1.1 Additional Parameters

VOLE and VOLE-in-the-Head. Table 5.1 details some additional parameters used in the
vector commitment and VOLE algorithms in Section 5. We define:

paramVOLE := (nleafcom, B, τ1, τ0, k, L, {Ni}τ−1i=0 )

One-Way Functions and their Parameters. FAEST uses one-way functions based on the
AES standard and its predecessor, Rijndael. For the FAEST parameter sets with security
levels λ ∈ {128, 192, 256}, these are defined using the AES block cipher as follows:

E128 : {0, 1}128 × {0, 1}128 → {0, 1}128

(k, x) 7→ AES128k(x)

E192 : {0, 1}192 × {0, 1}128 → {0, 1}256

(k, x) 7→ AES192k(x)∥AES192k(x⊕ 1)

E256 : {0, 1}256 × {0, 1}128 → {0, 1}256

(k, x) 7→ AES256k(x)∥AES256k(x⊕ 1)

For λ = 192, 256, the x ⊕ 1 operation XORs with the 128-bit, little-endian string
consisting of a single 1 followed by 127 zeroes. Note that for these settings, one 128-
bit AES block does not suffice for one-wayness, since there are likely to be many valid
preimages and an adversary can expect to find one with only 2128 block cipher operations.

For FAEST-EM, the one-way function is instead based on the Rijndael block cipher
with a λ-bit key and λ-bit block size (note that for λ = 128, Rijndael is the same as
AES128). This is defined as:

EEM
λ : {0, 1}λ × {0, 1}λ → {0, 1}λ

(k, x) 7→ Rijndael-λx(k)⊕ k

Table 3.3 describes some parameters of these one-way functions that are used in the
zero-knowledge proof phase. It includes, for example, the number of rounds R in the block
cipher, the block size Nst-bits, the number of S-boxes in a single encryption block, Senc, or
in the key schedule, Ske, as well as an integer β ∈ {1, 2} used to indicate the number of
AES blocks according to the security level.

We define the following structure, which is used in the algorithms specific to the one-
way function:

paramOWF := (Nk, Nst, Nst-bytes, Nst-bits, β, R, Ske, Senc, ℓke, ℓenc, ℓ, C).

3.2 Data Types and Conversions

Finite field Arithmetic. FAEST uses finite field arithmetic over F28 (as part of AES), F264 ,
as well as F2λ and F23λ , for each λ-bit security variant. These fields are defined as polyno-
mials over F2, taken modulo an irreducible polynomial P . The irreducible polynomials are
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Param. Formula Description FAEST FAEST-EM

λ 128 192 256 128 192 256

Nk
λ
32

no. 32-bit words in key 4 6 8 4 6 8

Nst 4 or λ
32

block size in 32-bit words 4 4 4 4 6 8

Nst-bytes 4Nst block size in bytes 16 16 16 16 24 32

Nst-bits 32Nst block size in bits 128 128 128 128 192 256

β ⌈ λ
Nst-bits

⌉ no. message blocks 1 2 2 1 1 1

R max(Nk, Nst) + 6 no. encryption rounds 10 12 14 10 12 14

Ske −λ
8
+ 56 + 28

⌊
λ

256

⌋
or 0 no. S-Boxes in key sch. 40 32 52 0 0 0

Senc 4 ·Nst ·R no. S-Boxes in enc. 160 192 224 160 288 448

ℓke λ+ 8Ske no. witness bits for key sch. 448 448 672 128 192 256

ℓenc 6Senc −Nst-bits no. witness bits for enc. 832 1 024 1 216 832 1 536 2 432

ℓ ℓke + βℓenc witness length in bits 1 280 2 496 3 104 960 1 728 2 688

C 2Ske + β · 3
2
Senc + 1 no. constraints 321 641 777 241 433 673

Table 3.3: Unified OWF parameters for all instances

taken from a table of low Hamming weight irreducible polynomials [Ser98], which agrees
with the AES specification [AES01] for P8.

P8(α) = α8 + α4 + α3 + α1 + 1

P64(α) = α64 + α4 + α3 + α1 + 1

P128(α) = α128 + α7 + α2 + α1 + 1

P192(α) = α192 + α7 + α2 + α1 + 1

P256(α) = α256 + α10 + α5 + α2 + 1

P384(α) = α384 + α12 + α3 + α2 + 1

P576(α) = α576 + α13 + α4 + α3 + 1

P768(α) = α768 + α19 + α17 + α4 + 1

An implementation does not necessarily need to support general arithmetic in all of
these fields, however. In particular, in the fields F23λ , we only ever do multiplication
between a λ-bit element (where only the lowest λ coefficients are non-zero) and a 3λ-
bit element, which can be performed significantly faster than regular multiplication.

Conversions To/From Bits, Field Elements and Integers. The following algorithms are
used to convert and manipulate finite field elements.

– ToField(x; k): maps x ∈ {0, 1}nk, for n ≥ 1 into a (vector of) field element(s) x ∈ Fn
2k

using little-endian ordering.

– ToBits(x; k, n): maps x ∈ Fn
2k
, for n ≥ 1, into a bit string x ∈ {0, 1}nk.

– ByteCombine(x;λ): takes a vector of exactly 8 bits, x ∈ {0, 1}8, and combines them into
a single element in F2λ using powers of an F28 generator within F2λ and little-endian
ordering. (The precise generators we use are specified in Appendix A.1.)

This ordering, where the most significant bit of the byte indicates the highest power
of the α8 generator element matches the interpretation of bytes as polynomials in the
AES standard [AES01].

In an implementation, depending on the chosen representation of finite field elements,
ToField and ToBits may not require any operations (e.g. if field elements are stored as
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ToField(x, k)

1 : let αk ∈ F2k // The α element of F2k

2 : if x ∈ {0, 1}k

3 : return x :=
∑k−1

i=0 x[i] · αi
k

4 : else if x ∈ {0, 1}nk

5 : new x ∈ Fn
2k

6 : for i ∈ [0..n) do

7 : x[i] :=
∑k−1

j=0 x[ni+ j] · αj
k

8 : return x

9 : else

10 : return ⊥

ToBits(x; k, n)

1 : new x := {} ∈ {0, 1}nk

2 : for i ∈ [0..n) do

3 : Parse x0 + x1αk + · · ·+ xk−1α
k−1
k = x[i] for xj ∈ F2

4 : xi := x0∥ · · · ∥xk−1 ∈ {0, 1}k

5 : x := x∥xi

6 : return x ∈ {0, 1}nk

ByteCombine(x; k)

1 : let α8 ∈ F2k // Generator of F28 within F2k (Appendix A.1)

2 : // Viewing x[i] ∈ F2 ⊂ F2λ

3 : return x =
∑7

i=0 x[i] · α
i
8

Fig. 3.4: Data conversion functions

BitDec(i, d)

1 : for j ∈ [0 . . . d− 1]

2 : bj := i mod 2

3 : i← (i− bj)/2

4 : return (b0, . . . , bd−1)

NumRec(d, (b0, . . . , bd−1))

1 : return
∑d−1

j=0 bj · 2
j

Fig. 3.5: Bit decomposition and reconstruction algorithms, little endian representation

packed byte arrays of polynomial coefficients). We use these functions in this specifica-
tion document to make explicit when we refer to field elements or to bit strings, and to
emphasize either to which finite field the elements belong, or the length of the bit strings.

In Figure 3.5, we describe the bit decomposition algorithm BitDec which decomposes
and integer i into d bits. The output is in little endian notation, i.e. the bit b0 is the
parity bit of i. Additionally, Figure 3.5 contains the integer reconstruction algorithm,
which maps a bit-string of length d uniquely into an integer in the interval [0..2d). Clearly,
NumRec(d,BitDec(i, d)) = i for all i ∈ [0, 2d).

3.3 Cryptographic Primitives

In addition to the one-way functions defined in Section 3.1.1, FAEST uses the following
symmetric primitives:
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– PRG : {0, 1}λ × {0, 1}128 × {0, 1}32 → {0, 1}∗, a pseudo-random generator taking as
input a λ-bit seed, 128-bit initialization vector and 32-bit tweak

– H0 : {0, 1}128 → {0, 1}3λ: hash function for commitment keys
– H1 : {0, 1}∗ → {0, 1}2λ, collision-resistant hash for vector commitments
– Hj

2 : {0, 1}∗ → {0, 1}∗, for j ∈ {1, 2, 3}, hash function for the j-th Fiat-Shamir chal-
lenge; modeled as a random oracle

– H3 : {0, 1}
∗ → {0, 1}λ+128, hash function for secret randomness derivation

– H4 : {0, 1}
∗ → {0, 1}128, hash function for IV derivation

PRG. The PRG can incorporate both a 128-bit initialization vector iv, and a 32-bit tweak.
These separate different uses of the PRG, increasing concrete security by preventing multi-
target attacks (see Section 9.1.2). The iv is freshly sampled for each signature, while the
tweak is modified for each distinct use within the signing and verification procedures.

We implement PRG using AES in CTR mode, as shown in Figure 3.6. The algorithm
takes the output bit-length m as an additional input, and starts by using the secret seed
sd to create an expanded AES key schedule. The tweak is then incorporated by adding it
to the upper 32 bits (in little-endian ordering) of the IV, using AddToUpperWord. Next,
the algorithm runs AES-CTR to obtain m bits of output, by iteratively encrypting and
incrementing the lower 32 bits of the IV modulo 232. Using the lower bits for the counter
and the upper bits for the tweak ensures that there is no conflict between these separation
mechanisms, and PRG is suitable for up to 232 blocks of output and 232 distinct tweaks
with the same iv input; both of these limits are far above what’s needed in a single run of
the signing algorithm.

AddToUpperWord(iv = (iv0, . . . , iv3), α)

Input: ivi ∈ {0, 1}32, α ∈ [0..232)

Output: iv′ ∈ {0, 1}128

1 : // iv3 is “upper” 32 bits in little-endian order

2 : iv′3 ← NumRec(32, iv3) + α mod 232

3 : return (iv0, iv1, iv2,BitDec(iv
′
3))

AddToLowerWord(iv, α)

Input: ivi ∈ {0, 1}32, α ∈ [0..232)

Output: iv′ ∈ {0, 1}128

1 : // iv0 is “lower” 32 bits in little-endian order

2 : iv′0 ← NumRec(32, iv0) + α mod 232

3 : return (BitDec(iv′0), iv1, iv2, iv3)

PRG(sd, iv, twk;m)

Input: sd ∈ {0, 1}λ, iv ∈ {0, 1}128, twk ∈ {0, 1}32,m ∈ N
Output: s ∈ {0, 1}m

1 : h := ⌊m/128⌋
2 : rem := m− 128 · h
3 : k← AES-λ.KeyExpansion(sd)

4 : iv′ ← AddToUpperWord(iv, twk)

5 : for i ∈ [0..h) do

6 : si ← AES-λ.Encrypt(k,AddToLowerWord(iv′, i))

7 : return s0 ∥ · · · ∥ sh−2 ∥ sh−1[0..rem− 1]

Fig. 3.6: Tweakable PRG based on AES-CTR

Hash functions. The hash functions are instantiated using SHAKE128, if λ = 128, and
SHAKE256 otherwise. As with PRG, for Hj

2 we write H
j
2(x; ℓ) to specify the output length ℓ

in bits. To ensure domain separation, we append a single byte i to the message, as follows:
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– Hi(m) := SHAKE(m∥i, ℓ), if i ∈ {0, 1, 3, 4}
– Hj

2(m) := SHAKE(m∥8 + j, ℓ)

Here, SHAKE is either SHAKE128 or SHAKE256, depending on λ.

In our security proofs, we model H0,H1,H
j
2 as random oracles, while H3 is modeled as

a pseudo-random function (where the last λ input bits are the key).

4 Additional Building Blocks

In this section we present two important components of our scheme, namely AES and the
universal hash functions used in the consistency checks described in Section 2.

4.1 AES and Rijndael

The Advanced Encryption Standard (AES) algorithm is a symmetric-key cipher with a
128-bit block size and key length of 128, 192 or 256 bits, running in R = 10, 12 or 14 rounds
(depending on the key length) [AES01]. These three versions of the AES algorithm will be
denoted AES128, AES192 and AES256 respectively. The AES algorithm is a standardised
variant of the Rijndael algorithm [DR02] which also accepts plaintext blocks of length 192
and 256 bits.

Each execution of the AES algorithm uses three routines: key expansion (which gener-
ates round keys), encryption (called “cipher” in the standard) and decryption (or inverse
cipher). The Rijndael algorithm uses the same routines, with different size parameters. In
this document, we will ignore the decryption routine as we will use encryption (including
key expansion) as a one-way function (OWF). To describe these routines we will use the
following terms.

(Cipher) Key. Secret, cryptographic key that is used by the key expansion routine to
generate the round keys (also called expanded key); it can be pictured as a rectangular
array of bytes, having four rows and Nk columns. Both AES and Rijndael accept
Nk ∈ {4, 6, 8}.

Round key. Round keys are values derived from the key using the key expansion routine;
they are applied to the state in the encryption routine.

State. Intermediate Cipher result that can be pictured as a rectangular array of bytes,
having four rows and Nst columns. In the case of AES Nst = 4 is fixed by the standard.
The Rijndael algorithm also accepts states with Nst ∈ {6, 8}.

S-box. Non-linear substitution table used to perform one-to-one byte substitutions.

The Rijndael algorithm sometimes runs more rounds in the encryption routine than
AES does for the same Nk, depending on the block size Nst. The following table gives the
different values of R; it can be summarised as R := max(Nk, Nst) + 6.

R Nst = 4 Nst = 6 Nst = 8

Nk = 4 10 12 14

Nk = 6 12 12 14

Nk = 8 14 14 14
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The State. As mentioned above, the intermediary result of the AES encryption, on which
the next round of operations is about to be performed, can be arranged in a 4 × Nst

rectangular array of bytes called the state. In this section, we denote this state array by
s, and refer to each byte of s as sr,c, where 0 ≤ r < 4 and 0 ≤ c < Nst denote respectively
the row and column indices of the byte.

We note that we follow the approach of the standard and view the state as an array of
columns when appropriate. That is, to interpret the 4×Nst array as a 4 ·Nst-byte string,
we read the rectangular array by first going down the first column, and then moving on
to the second (i.e. in column-major order):

s→ s0,0s1,0s2,0s3,0s0,1 . . . s1,Nst−1s2,Nst−1s3,Nst−1.

4.1.1 The AES S-box. The only non-linear component of the AES and Rijndael
algorithms is the S-box byte-for-byte substitution; the SubBytes transformation is then
obtained by applying the S-box substitution independently to each byte of the state. The
S-box itself is composed of two transformations:

1. Taking the multiplicative inverse in the finite field GF (28), and mapping 0 to itself.

2. Applying the following GF (2)-affine transformation:

bi 7→ bi ⊕ b(i+4) mod 8 ⊕ b(i+5) mod 8 ⊕ b(i+6) mod 8 ⊕ b(i+7) mod 8 ⊕ ci,

for 0 ≤ i < 8, where bi is the i-th bit of the byte, and ci is the i-th bit of a byte c with
value 0110 0011. We denote this transformation on the byte b as b′ = L(b) but stress
that it is only affine over GF (2).

4.1.2 The AES and Rijndael Algorithms. In addition to SubBytes, there are three
other operations defined by the AES standard: ShiftRows, MixColumns and AddRoundKey.
These same operations are similarly defined for the Rijndael algorithm [DR02]. These are
used as part of two routines, KeyExpansion and Encrypt, which respectively expand the
λ-bit key k into R+1 round keys and transform the input array (plaintext block) into the
output array (ciphertext block).

ShiftRowsNst. In this first transformation, the bytes in the rows of the State are cyclically
shifted left by different increments. For the AES algorithm with Nst = 4, the first row is
not changed, the second row shifts by one, the third row shifts by two, and the last row
shifts by three. This effects the following permutation on the state:

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

−→

s0,0 s0,1 s0,2 s0,3

s1,1 s1,2 s1,3 s1,0

s2,2 s2,3 s2,0 s2,1

s3,3 s3,0 s3,1 s3,2

For the Rijndael algorithm, these shifts are the same when Nst = 6, but differ for
Nst = 8. In this second case, the third row is shifted by three (instead of two) and the
fourth row is shifted by four (instead of three).

MixColumns. This second transformation applies a F28-linear transformation to each of
the columns of the state, identically and independently. Since each column of the state
containes exactly four bytes in both AES and Rijndael, this transformation is identical for
both algorithms.
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While the standard presents this transformation first using polynomial multiplication
in GF (28)[x] followed by reduction modulo x4 +1, we present it here directly as a matrix
multiplication: 

s′0,c
s′1,c
s′2,c
s′3,c

 =


{02} {03} {01} {01}
{01} {02} {03} {01}
{01} {01} {02} {03}
{03} {01} {01} {02}



s0,c
s1,c
s2,c
s3,c

 for 0 ≤ c < 4.

Here, the bytes of the state are viewed as F28 elements according to the ByteCombine
routine and the matrix coefficients are taken from the following values:

Byte Field element

{01} 1

{02} α

{03} α+ 1

where α generates F28 .

AddRoundKey. This final transformation adds one of the round keys to the state with a
simple bit-wise XOR operation. Each round key is made up of Nst words of 4 bytes each,
derived from the key expansion routine, which are each added onto the state such that

s′0,c
s′1,c
s′2,c
s′3,c

 =


s0,c
s1,c
s2,c
s3,c

⊕

k̄[round ∗ 4 + c]0
k̄[round ∗ 4 + c]1
k̄[round ∗ 4 + c]2
k̄[round ∗ 4 + c]3

 for 0 ≤ c < 4,

where the k̄[i] are the expanded key words, and 0 ≤ round ≤ R indicates the current
round of the algorithm.

Key Expansion routine. Before starting the R rounds of the encryption routine, the AES
and Rijndael algorithms perform the key expansion routine on the cipher key k to obtain
a total of Nst · (R + 1) expanded key words. To do so, the key expansion routine makes
use of two transformations:

SubWord Takes a 4-byte input word and returns an output word by applying the AES
S-box to each of the four bytes.

RotWord Takes a 4-byte input word [a0, a1, a2, a3] and performs a cyclic permutation to
return the 4-byte output word [a1, a2, a3, a0].

In addition, a round constant with value [Rcon[i]∥{00}∥{00}∥{00}] is added at certain
intervals during the key expansion (after every multiple of Nk words); the value Rcon[i] is
computed as {02}i = αi

8 ∈ F28 . The different values of Rcon[i] are for the AES algorithm
with Nst = 4 are listed in Table 4.1; the values of Rcon[i] for greater values of i for the
Rijndael algorithm can be derived by continuing the sequence.

The KeyExpansion routine (Fig. 4.2) first places the Nk words of the key k into the first
Nk words of the expanded key k̄, and then computes each next word k̄[i] as the XOR of the
one before, k̄[i−1], with the oneNk words back, k̄[i−Nk]. EveryNk words, a transformation
to k̄[i− 1] is applied before the XOR: first with RotWord, then with SubWord, and finally
with an XOR with the round constant word [Rcon[i/Nk − 1]∥{00}∥{00}∥{00}]. When λ =
256, for which Nk = 8, there is an additional SubWord operation applied to k̄[i− 1] when
the word index i mod 8 = 4, but without the RotWord transformation or the XOR with
the round constant word.
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Round index i 0 1 2 3 4 5 6 7 8 9

Rcon[i] {01} {02} {04} {08} {10} {20} {40} {80} {1b} {36}

Table 4.1: Round constant values for the AES algorithm, in bytes.

KeyExpansion(k; paramOWF)

1 : new k̄ ∈ [{0, 1}32;Nst(R+ 1)] // Empty expanded key, as an array of words

2 : for i ∈ [0..Nk) do

3 : k̄[i] := k[i] // Here k ∈ [{0, 1}32;Nk] is viewed as an array of words

4 : for i ∈ [Nk..Nst(R+ 1)) do

5 : tmp := k̄[i− 1]

6 : if i mod Nk = 0 then

7 : tmp := SubWord(RotWord(tmp)) + [Rcon[i/Nk − 1]∥{00}∥{00}∥{00}]
8 : if Nk > 6 and i mod Nk = 4 then

9 : tmp := SubWord(tmp)

10 : k̄[i] := k̄[i−Nk] + tmp

11 : return k̄

Fig. 4.2: The AES and Rijndael key expansion routines

Encryption routine. The Encrypt routine (Fig. 4.3) matches that given by the AES stan-
dard [AES01, Figure 5] and the original Rijndael specification. First, the input plaintext
in ∈ {0, 1}32·Nst is bit-wise XOR-ed with the first Nst words of the expanded key at line 3.
Second, for all but the last round, the SubBytes, ShiftRows and MixColumns transforma-
tions are applied in sequence to the state, before a new XOR with the next Nst words
of the expanded key (lines 5–9). Finally, the last round applies the same transformations
with the exception of MixColumns. All of this leaves the state containing the ciphertext
array out ∈ {0, 1}32·Nst .

4.2 Galois Conjugates and Field Norm

Definition 4.1 (Galois Conjugates). Let K = Fpm and L = Fpn be finite fields of
characteristic p where m|n. Then the map ϕ : L → L;x 7→ xp is called the Frobe-
nius endomorphism. For Gal(L/K) = {ϕi·m}i∈{0,..., n

m
−1} and for every a ∈ L, the values

σ1(a), σ2(a), . . . with σi ∈ Gal(L/K) are the Galois conjugates of a for Gal(L/K).

Definition 4.2 (Norm and Trace). Let K = Fq and L = Fqn be finite fields and a ∈ L,
then

NL/K(a) :=
∏

σ∈Gal(L/K)

σ(a)

is called the norm of a and

TrL/K(a) :=
∑

σ∈Gal(L/K)

σ(a)

is called the trace of a.
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Encrypt(in, k̄; paramOWF)

1 : new state ∈ {0, 1}32·Nst

2 : state := in

3 : AddRoundKey(state, k̄[0..Nst − 1])

4 : for r ∈ [1..R) do

5 : SubBytes(state)

6 : ShiftRowsNst(state)

7 : MixColumns(state)

8 : AddRoundKey(state, k̄[Nstr..Nst(r + 1)− 1])

9 : SubBytes(state)

10 : ShiftRowsNst(state)

11 : AddRoundKey(state, k̄[NstR..Nst(R+ 1)− 1])

12 : return out := state

Fig. 4.3: The encryption routine

It is well-known that NL/K(a), T rL/K(a) ∈ K. We will make use of the following fact.

Remark 4.3. Let L,K be defined as above. Then L is a K-vector space of dimension n
and the functions Fβ : L → K;x 7→ TrL/K(β · x) are exactly all the K-linear functions
from vector space L to K when considering all β ∈ L.

4.3 Universal Hashing

Two of the consistency checks used in FAEST require a family of linear, universal hash
functions. In order to get tight bounds and fast algorithms, we use a combination of
small matrix hashes and polynomial hashes, which are designed to take advantage of
CPUs with 64-bit binary polynomial multipliers, whilst supporting security parameters
λ ∈ {128, 192, 256}.

The hash functions are specified in Figure 4.4, and analyzed in the remainder of this
section. We need the hashes to be ε-almost universal, as defined below. For some interme-
diate building blocks, we will also use the ε-almost uniform property.

Definition 4.4. A family of linear hash functions is a family of matrices H ⊆ Fr×n
q . The

family is ε-almost universal if for any non-zero x ∈ Fn
q ,

Pr
H←H

[Hx = 0] ≤ ε.

The family is ε-almost uniform, if for any non-zero x ∈ Fn
q and for any v ∈ Fr

q,

Pr
H←H

[Hx = v] ≤ ε.

Note that the algorithms in Figure 4.4 specify how a random bit string sd of the
appropriate length is used to sample a function from the family and evaluate it on a given
input x.

Our hashes must also satisfy the following hiding property.

Definition 4.5. A matrix H ∈ Fr×(n+h)
q is Fn

q -hiding if the distribution of Hv is indepen-

dent from v[0..n) when v[n..n+h) ← Fh
q . A hash family H ⊆ Fr×(n+h)

q is Fn
q -hiding if every

H ∈ H is Fn
q -hiding.
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VOLEHash(sd, (x0,x1) ∈ {0, 1}ℓ+2λ × {0, 1}λ+B)

1 : // λ-bit ri, s; 64-bit t

2 : Parse sd = (r0∥r1∥r2∥r3∥s∥t) ∈ {0, 1}5λ+64

3 : ri := ToField(ri, λ), for i ∈ [0..3]

4 : s := ToField(s, λ)

5 : t := ToField(t, 64)

6 : ℓ′ := λ · ⌈(ℓ+ λ)/λ⌉
7 :

8 : x0 := x0∥0ℓ
′−(ℓ+λ) // pad to multiple of λ

9 : ŷ := ToField(x0, λ)

10 : y := ToField(x0, 64)

11 : h0 :=
∑ℓ′/λ−1

i=0 sℓ
′/λ−1−i · ŷ[i] (in F2λ)

12 : h1 :=
∑ℓ′/64−1

i=0 tℓ
′/64−1−i · y[i] (in F264)

13 : h′
1 := ToField(ToBits(h1)∥0λ−64, λ)

14 : (h2, h3) := (r0h0 + r1h
′
1, r2h0 + r3h

′
1)

15 : h := (ToBits(h2)∥ToBits(h3)[0..B))⊕ x1

16 : return h

ZKHash(sd, (x0, x1) ∈ Fℓ
2λ × F2λ)

1 : // λ-bit ri, s; 64-bit t

2 : Parse sd = (r0∥r1∥s∥t) ∈ {0, 1}3λ+64

3 : ri := ToField(ri, λ), for i ∈ {0, 1}
4 : s := ToField(s, λ)

5 : t := ToField(t∥0λ−64, λ)

6 : h0 :=
∑ℓ−1

i=0 s
ℓ−1−i · x0[i]

7 : h1 :=
∑ℓ−1

i=0 t
ℓ−1−i · x0[i]

8 : h := ToBits(r0h0 + r1 · h1 + x1)

9 : return h

Fig. 4.4: Universal hashing algorithms

We will use the following, straightforward method of transforming a uniform hash
family into a universal family that is hiding.

Proposition 4.6. Let H ⊆ Fr×n
q be an ε-almost uniform hash family. Let H′ ⊆ Fr×(n+r)

q

be the family {[H Ir] : H ∈ H}, where Ir is the r × r identity matrix. Then, it holds that
(1) H′ is ε-almost universal, and (2) H′ is Fn

q -hiding.

Proof. Let x =

[
x0

x1

]
be non-zero, for x0 ∈ Fn

q and x1 ∈ Fr
q. If H

′ ← H′ then, Hx = 0

implies Hx0 = x1, and since at most one of x0,x1 are zero, we cannot have x0 = 0, so this
holds with probability at most ε. For the second part, the hiding property holds because Ir
ensures that if the last r elements of the input to the hash are uniform then they perfectly
mask the rest.

4.3.1 Standard Constructions. As building blocks, we use two well-known construc-
tions of linear universal hash families [CW79, BJKS94]. The first is a simple matrix hash
family, where H = Fr×n

q , which is q−r-uniform. The second is a polynomial-based hash,
where the input v ∈ Fn

q is parsed as the coefficients of a polynomial of degree up to
n − 1, and sampling a hash function involves evaluating the polynomial at a randomly
chosen point in Fq. Since the polynomial has at most n− 1 roots over Fq, this hash family
is (n − 1)/q-almost universal. We also use a variant of this where the random point is
restricted to a subset S ⊂ Fq, which is (n− 1)/ |S|-universal.

4.3.2 Composition and Truncation of Hashes. We rely on the following composi-
tion results. Similar properties have been shown in e.g. [Sti92, Roy22].

Proposition 4.7. Let H,H′ be ε and ε′-almost universal families. Then, the concatena-

tion {

[
H

H′

]
: H ∈ H,H′ ∈ H′} is εε′-almost universal.
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Proof. Follows from independence of H and H′.

Proposition 4.8. Let H ⊆ Fr′×n
q be ε-almost universal and H′ ⊆ Fr×r′

q be ε′-almost
uniform. Then, the product {H′H : H ∈ H,H′ ∈ H′} is (ε+ ε′)-almost uniform.

Proof. Let x ∈ Fn
q be non-zero. Then, x′ = Hx is non-zero with probability at least 1− ε.

If x′ is non-zero, then for any v ∈ Fr
q, H

′x′ ̸= v with probability at least 1 − ε′, by the
uniformity of H′. It follows that Pr[H′Hx ̸= v] ≥ (1− ε)(1− ε′) ≥ 1− ε− ε′, and so the
product is an (ε+ ε′)-almost uniform family.

Proposition 4.9. Let δ ∈ N and H ⊆ Fr×n
q be an ε-almost uniform family. Then, the

truncated family {H[0..r−δ) : H ∈ H} is εqδ-uniform.

Proof. For each H ∈ H, write H =

[
H0

H1

]
, where H0 ∈ F(r−δ)×n

q and H1 ∈ Fδ×n
q . Let

y =

[
y0

y1

]
∈ Fr

q and x ∈ Fn
q \ {0}. If H ← H we have Pr[Hx = y] ≤ ε. Applying

conditional probability, we get

Pr[H0x = y0 ∧H1x = y1] ≤ ε

Pr[H0x = y0] · Pr[H1x = y1 | H0x = y0] ≤ ε

Pr[H0x = y0] ≤ ε · (Pr[H1x = y1 | H0x = y0])
−1

≤ ε · qδ

where the final inequality comes from fixing a y1 ∈ Fδ
q that maximizes p = Pr[H1x = y1 |

H0x = y0], which implies p is at least q−δ.

4.3.3 VOLE Universal Hash. The first check, to verify consistency of the VOLE

correlations, requires a family that is linear over F2. It’s evaluated on inputs in Fℓ̂
2, where

ℓ̂ = ℓ+ 3λ+B, ℓ is the witness length and B = 16 is a parameter chosen for security.14

To build the hash, we map the seed sd into (r0, r1, r2, r3, s, t) ∈ F5
2λ
× F264 . The input

x ∈ Fℓ̂
2 is first split into (x0,x1), where x0 ∈ {0, 1}ℓ+λ, and then x0 is parsed twice, first

as a vector ŷ of F2λ elements, and then as a vector y of F264 elements. Then, compute

h0 = ŷ0s
ℓ̂/λ−1 + ŷ1s

ℓ̂/λ−2 + · · ·+ ŷℓ̂/λ−2s+ ŷℓ̂/λ−1 in F2λ ,

h1 = y0t
ℓ̂/64−1 + y1t

ℓ̂/64−2 + · · ·+ yℓ̂/64−1t+ yℓ̂/64−1 in F264

Viewing h1 as an element of F2λ (by zero-padding), the hash is then defined by com-
puting, in F2λ [

h2
h3

]
=

[
r0 r1
r2 r3

][
h0
h1

]
Finally, take the first λ+B bits of the concatenation of the field elements h2 and h3, and
XOR this with x1 to obtain the output.

We argue security of the construction below. Note that instead of aiming for ε = 2λ,
we aim for 2−λ−B, where B = 16 (Table 3.2). The extra few bits of security compensate
for the

(
τ
2

)
security loss in the proof of the SoftSpokenVOLE protocol from [BBD+23b].

14Our signature scheme actually calls VOLEHash on input an ℓ̂× λ matrix, which is translated into
computing the hash on each column separately, with the same seed.
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Lemma 4.10. VOLEHash is an εv-almost universal hash family in F(λ+B)×ℓ̂
2 , for εv =

2−λ−B(1 + 2B−50), if ℓ̂ ≤ 213. Furthermore, VOLEHash is Fℓ+λ
2 -hiding.

Proof. We show εv-uniformity of the hash that outputs the first λ+B bits of (h2, h3), i.e.
without adding x1. By Proposition 4.6, this implies εv-universality of the final hash, as
well as the hiding property.

The first part of the hash — computing h0, h1 — is a concatenation of two polynomial
hashes, over either F2λ or F264 . These are ε-universal with ε = d/ |F|, where d is the
polynomial degree and F is the field, and we have d ≤ ℓ̂/64. Since binary field multiplication
is bilinear over F2, both of these hashes are also F2-linear. Applying Proposition 4.7, their
concatenation is then ε0-universal with ε0 ≤ ℓ̂ 2/2λ+76. Note that for ℓ̂ ≤ 213, we have
ε0 ≤ 2−λ−50.

The second part of the hash starts with a 2 × 2 matrix hash, which is 2−2λ-uniform.
After truncation, the resulting hash is ε1-uniform for ε1 = 2−λ−B, by Proposition 4.9.
The final combined hash is the product of these two parts, so applying Proposition 4.8
and summing the probabilities, we get that for all ℓ̂ ≤ 213, the hash is εv-uniform for
εv = ε0 + ε1 ≤ 2−λ−B(1 + 2B−50).

4.3.4 ZK Universal Hash. Our second hash, used for verifying AES constraints in
ZK, must be linear over F2λ . It works on inputs of ℓ′ = ℓ+ 1 field elements. We map the
seed sd into r0, r1, s, t ∈ F2λ , where r0, r1 and s are uniform, while t (viewed as an F2

polynomial) is zero in all its degree ≥ 64 coefficients (and uniform otherwise). Let

r⊤ :=
[
r0 r1

] [sℓ−1 sℓ−2 · · · s 1
tℓ−1 tℓ−2 · · · t 1

]

The hash of an input x = (x0, x1) ∈ Fℓ
2λ
× F2λ is simply h = r⊤x0 + x1.

Lemma 4.11. ZKHash is an εzk-almost universal hash family in F1×ℓ′
2λ

, for εzk = 2−λ(1+

2−38), if ℓ′ ≤ 213. Furthermore, ZKHash is Fℓ
2λ
-hiding.

Proof. As with VOLEHash, by Proposition 4.6 it suffices to show εzk-uniformity of the hash
defined by r⊤x0.

This hash is a product of two separate hashes. The outer hash — multiplication by
(r0 r1) — is a standard matrix hash, which is 2−λ-almost uniform. The inner hash is a
concatenation of two polynomial evaluations, the first of which defines an almost-universal
hash for ε0 = (ℓ′−1)/2λ, and the second for ε1 = (ℓ′−1)/264; together, this gives an ε0ε1-
almost universal hash (via Proposition 4.7), where ε0ε1 ≤ (ℓ′)2/2λ+64 ≤ 2−λ−38, for all
ℓ′ ≤ 213. Combining the inner and outer parts, from Proposition 4.8 we get that ZKHash
is εzk-almost uniform for εzk = 2−λ(1 + 2−38).
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5 VOLE-in-the-Head Functions

In this section we describe the algorithms required to build the VOLEitH protocol. This
is obtained from a batch all-but-one vector commitment scheme (BAVC), presented in
Section 5.2, whose outputs are transformed in VOLE correlations using the ConvertToVOLE
algorithm described in Section 5.4. Finally, both of these are used to build the VOLEitH
protocol, described in Section 5.5.

The main parameters used by the VOLEitH protocol are listed in Table 5.1. As de-
scribed informally in Section 2.1, our BAVC scheme implements a single large GGM tree
of size L =

∑
iNi that collectively commits to τ vectors {(mi,0, . . . ,mi,Ni−1)}

τ−1
i=0 , of which

τ1 of bit-length k and τ0 of bit-length k−1. Ni represents the length of vector i, i = [0..τ).

Parameter Formula Description

nleafcom 3 for FAEST, 2 for FAEST-EM Number of λ-bit blocks in leaf commitments

τ1 (λ− wgrind) mod τ Number of larger small-VOLE instances

τ0 τ − τ1 Number of smaller small-VOLE instances

k ⌊(λ− wgrind)/τ⌋+ 1 Bit-length of the larger small-VOLE instances

k − 1 k − 1 Bit-length of the smaller small-VOLE instances

Ni 2k if i < τ1, 2
k−1 otherwise Field size in the i-th small-VOLE instance

L
∑τ−1

i=0 Ni = τ12
k + τ02

k−1 Number of leaves in the GGM tree

B 16 Extra length padding for the VOLE check

ℓ̂ ℓ+ 3λ+B Witness length plus extra randomness for VOLE + ZK checks

Table 5.1: Extra parameters used in the VOLE-in-the-head components of FAEST

5.1 Building blocks for BAVC and FAEST commitments

Before describing the main BAVC scheme, we give some auxiliary algorithms.

– BAVC.PosInTree. It uses the fact that each leaf node in the GGM tree corresponds to
exactly one position (i, j) in the τ vectors. More specifically, the function maps a pair
(i, j), corresponding to the position j in the vector i out of τ total vectors, to a unique
leaf index α ∈ [L− 1..2L− 1).

BAVC.PosInTree(i, j)

Input: i ∈ [0..τ), j ∈ [0..Ni)

Output: α ∈ [L− 1..2L− 1)

1 : if j < 2k−1 then

2 : return L− 1 + τj + i

3 : else

4 : return L− 1 + τ2k−1 + τ1(j mod 2k−1) + i

Fig. 5.2: Leaf position utility function in BAVC
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FAEST.LeafHash(uhash,x)

Input: uhash ∈ {0, 1}3λ,x = (x0,x1) ∈ {0, 1}λ × {0, 1}3λ

Output: h ∈ {0, 1}3λ

1 : u← ToField(uhash, 3λ)

2 : x0 ← ToField(x0∥02λ, 3λ)
3 : x1 ← ToField(x1, 3λ)

4 : h← x0 · u+ x1

5 : h← ToBits(h)

6 : return h

FAEST.LeafCommit(r, iv, twk, uhash)

Input: r ∈ {0, 1}λ, iv ∈ {0, 1}128

twk ∈ {0, 1}32, uhash ∈ {0, 1}3λ

Output: sd ∈ {0, 1}λ, com ∈ {0, 1}3λ

1 : (sd, s0, s1, s2)← PRG(r, iv, twk; 4λ)

2 : (sd,x1)← PRG(r, iv, twk; 4λ)

3 : com← LeafHash(uhash, (sd∥s0∥s1∥s2))
4 : com← LeafHash(uhash, (sd∥x1))

5 : return (sd, com)

FAEST-EM.LeafCommit(r, iv, twk)

Input: r ∈ {0, 1}λ, iv ∈ {0, 1}128, twk ∈ {0, 1}32

Output: sd ∈ {0, 1}λ, com ∈ {0, 1}2λ

1 : com← PRG(r, iv, twk; 2λ)

2 : sd← r

3 : return (sd, com)

Fig. 5.3: New AES-based leaf commitment functions for BAVC

– BAVC.LeafCommit. It represents a direct random oracle-based leaf commitment func-
tion for BAVC, that could be used if we don’t want to rely on an AES-based approach.
This algorithm combines a short seed s, a 128-bit vector iv and a 32-bit vector twk
into a single input for a random oracle that outputs 3λ bits. The first λ bits become
the seed sd, while the remaining 2λ bits form the commitment.

– FAEST.LeafHash. It describes the hash used in FAEST.LeafCommit. To build the hash,
it maps the seed uhash ∈ {0, 1}3λ and the input vector x = (x0,x1) ∈ {0, 1}λ×{0, 1}3λ
into field elements u, x0, x1 ∈ F23λ . Then it computes the hash h = x0 · u+ x1 ∈ F23λ ,
and finally converts back to bits.

– FAEST.LeafCommit. This functions expands a λ-bit seed r via PRG into 4λ bits. The
first block of λ bits becomes leaf sd; the other 3λ bits x1, combined with an additional
uhash input, are processed by FAEST.LeafHash to produce a 3λ-bit commitment.

– FAEST-EM.LeafCommit. This simpler variant of LeafCommit calls PRG on (r, iv, twk),
but only requests 2λ bits of output. It returns the original seed r as leaf seed and uses
the 2λ-bit PRG output directly as the commitment.

5.2 Batch All-but-One Vector Commitments

In this section we describe our BAVC algorithms given in Figure 5.4 and Figure 5.5.

BAVC.Commit. It generates a batch vector commitment as follows. It starts by generating
seeds for each internal node of a GGM tree using PRG (Figure 3.6). The resulting tree
has L leaves, enough to cover all positions across the τ vectors. For each leaf, a leaf
commitment function LeafCommit is called, producing both a leaf seed sdi,j and a
commitment comi,j . The algorithm then groups these commitments by vector, i.e.,

for each i ∈ [0..τ − 1], it collects {comi,j}Ni−1
j=0 and hashes them together obtaining
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hi. The final commitment com is the hash of all τ commitments h0, . . . , hτ−1. The
algorithm returns (1) the commitment com, (2) the full collection of GGM seeds and
leaf commitments in decom for later decommitment, and (3) the leaf seeds sdi,j , i ∈
0, τ − 1.

BAVC.Open. Given opening values ∆i, i ∈ [0..τ − 1], to keep hidden in each of the τ
committed vectors, this algorithm produces a “partial opening” decomI . It does so by
marking the unopened leaves in the GGM tree and revealing the seeds on those internal
nodes that suffice to reconstruct all other leaves. If the chosen pattern of hidden leaves
is too large to open within a threshold Topen, the algorithm aborts. Otherwise, the
revealed seeds and unopened leaf commitments are collected as decomI .

BAVC.Reconstruct. This algorithm takes the partial opening decomI , along with the index
vector I = (∆0, . . . ,∆τ−1), and reconstructs every leaf except those at the unopened
positions. Specifically, it parses the revealed seeds from decomI , walks up the GGM
tree to recover missing seeds, and re-computes the per-leaf commitments comi,j . The
final output is (1) the recomputed commitment com and (2) the set of seeds for all
opened leaves.

5.3 BAVC Correctness

We show that the BAVC scheme presented in the previous section satisfies correctness
with aborts. Informally, by “correctness,” we mean that if Open returns a non-⊥ partial
opening for an index vector I = (∆0, . . . ,∆τ−1), then Reconstruct indeed recovers the
original commitment com and the correct hidden seeds for all opened positions.

Proposition 5.1 (BAVC Correctness with Aborts). Let BAVC be the batch all-but-
one vector commitment scheme described in Figure 5.4 and Figure 5.5. Then

∀(com, decom, {sdi,j}) ← BAVC.Commit(r, iv; param, paramVOLE), where r ← {0, 1}λ
is the root seed, iv ← {0, 1}128 is an AES-CTR IV, and param, paramVOLE are public
parameters, and ∀ decomI ← BAVC.Open(decom, I = (∆0, . . . ,∆τ−1)),

if Open does not abort (so that decomI ̸= ⊥), then

( ˆcom, {ŝdi,j}j ̸=∆i
) ← BAVC.Reconstruct(decomI , I, iv; param, paramVOLE)

is such that ˆcom = com and ŝdi,j = sdi,j for all j ̸= ∆i.

Proof. (Sketch.) We prove that any decomI ̸= ⊥ output by BAVC.Open contains exactly
the information needed for BAVC.Reconstruct to re-compute and recover every unhidden
leaf’s seed (sdi,j , j ̸= ∆i), as well as re-compute the final hash com.

First, we recall from BAVC.Commit (Figure 5.4) that each internal node seed kα of the
GGM tree is expanded via a deterministic pseudorandom generator:

(k2α+1, k2α+2) ← PRG(kα, iv, α; 2λ).

Hence, if the same node α and parent seed kα appear in two different executions, they will
produce the same child seeds. This implies that all node seeds in the unhidden part of the
tree are fixed as soon as we fix k0 = r and the expansions up to those unhidden nodes.

When BAVC.Open(decom, I) runs, it marks the leaf corresponding to BAVC.PosInTree(i,∆i)
for each vector i as “hidden” and includes exactly the subset of child seeds needed to re-
derive all other leaves. This selective opening does not give out the seeds on a path if that
path leads to a fully hidden leaf. The algorithm also checks that the total size of revealed
seeds stays below some threshold Topen; if not, it aborts with ⊥. Concretely, in the final
partial decommitment decomI , generated in BAVC.Open, we see:
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5. VOLE-IN-THE-HEAD FUNCTIONS 29
BAVC.Commit(r, iv; param, paramVOLE)

Input: r ∈ {0, 1}λ, iv ∈ {0, 1}128

Output: com ∈ {0, 1}2λ, decom ∈ {0, 1}(2L−1)λ+nleafcomλτ , seeds ∈ {0, 1}kλ

1 : if variant is FAEST-λ do

2 : (uhash0, . . . , uhashτ−1)← H0(iv; 3λτ)

3 : uhash← H0(iv; 3λ)

4 : // For FAEST-EM, ignore uhash

5 : k0 ← r

6 : for α ∈ [0..L− 2] do

7 : (k2α+1, k2α+2)← PRG(kα, iv, α; 2λ)

8 : for i ∈ [0..τ) do

9 : for j ∈ [0..Ni) do

10 : α← BAVC.PosInTree(i, j)

11 : (sdi,j , comi,j)← LeafCommit(kα, iv, i+ L− 1, uhashi)

12 : hi ← H1(comi,0∥ . . . ∥comi,Ni−1)

13 : com← H1(h0∥ . . . ∥hτ−1)

14 : decom←
(
(kα)α∈[0..2L−1), (comi,j)i∈[0..τ),j∈[0..Ni)

)
15 : return (com, decom, (sd0,i, . . . , sdNi−1,i)i∈[0..τ))

BAVC.Open(decom, I = (∆0, . . . ,∆τ−1); param, paramVOLE)

Input: decom ∈ {0, 1}(2L−1)λ+nleafcomλτ , I ∈ [0..N0)× · · · × [0..Nτ−1)

Output: decomI ∈ {0, 1}nleafcomλτ+Topenλ ∪ {⊥}

1 : Parse decom :=
(
(kα)α∈[0..2L−1), (comi,j)i∈[0..τ),j∈[0..Ni)

)
2 : // Initialize opening with the τ leaf hashes

3 : decomI ← (com0,∆0 , . . . , comτ−1,∆τ−1)

4 : // Mark tree nodes that will not be revealed

5 : S ← 02L−1 ∈ {0, 1}2L−1

6 : nh ← 0 // number of marked hidden nodes

7 : for i ∈ [0..τ) do

8 : // Mark each unopened leaf and its descendants

9 : α← BAVC.PosInTree(i,∆i)

10 : S[α]← 1

11 : nh ← nh + 1

12 : while α > 0 and S[⌊(α− 1)/2⌋] = 0 do

13 : α← ⌊(α− 1)/2⌋
14 : S[α]← 1

15 : nh ← nh + 1

16 : if nh − 2τ + 1 > Topen then

17 : return ⊥
18 : // Add tree nodes to opening information

19 : for i = L− 2 to 0 do

20 : // If exactly one child needs to be opened, open it

21 : if S[2i+ 1]⊕ S[2i+ 2] = 1 then

22 : α← 2i+ 1 + S[2i+ 1]

23 : Append kα to decomI

24 : Zero-append decomI to length nleafcomλτ + Topenλ bits

25 : return decomI

Fig. 5.4: Commit and open algorithms for batch all-but-one vector commitment
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BAVC.Reconstruct(decomI , I = (∆0, . . . ,∆τ−1), iv; param, paramVOLE)

Input: decomI ∈ {0, 1}nleafcomλτ+Topenλ, I ∈ [0..N0)× · · · × [0..Nτ−1)

Output: com ∈ {0, 1}2λ and L− τ seeds in {0, 1}λ

1 : Parse decomI = (com0,∆0 , . . . , comτ−1,∆τ−1 , nodes)

2 : if variant is FAEST-λ do

3 : (uhash0, . . . , uhashτ−1)← H0(iv; 3λτ)

4 : uhash← H0(iv; 3λ)

5 : // For FAEST-EM, ignore uhash

6 : // Mark tree nodes that are not revealed

7 : S ← 02L−1 ∈ {0, 1}2L−1

8 : for i ∈ [0..τ) do

9 : // Mark each unopened leaf node

10 : α← BAVC.PosInTree(i,∆i)

11 : S[α]← 1

12 : // Walk up the tree, copying nodes from decomI

13 : for i = L− 2 to 0 do

14 : S[i]← S[2i+ 1] ∨ S[2i+ 2]

15 : // If exactly one child has been opened, take seed from the opening

16 : if S[2i+ 1]⊕ S[2i+ 2] = 1 then

17 : if nodes is empty then

18 : return ⊥
19 : α← 2i+ 1 + S[2i+ 1]

20 : Parse nodes = (kα, nodes
′) // Extract node kα ∈ {0, 1}λ

21 : nodes← nodes′

22 : if nodes is not empty, or not all zeroes then

23 : return ⊥
24 : // Expand the tree

25 : for i ∈ [0..L− 1) do

26 : if S[i] = 0 do

27 : (k2i+1, k2i+2)← PRG(ki, iv, i; 2λ)

28 : for i ∈ [0..τ) do

29 : for j ∈ [0..Ni) do

30 : α← BAVC.PosInTree(i, j)

31 : if S[α] = 1 then

32 : hi,j ← comi,j

33 : else

34 : (sdi,j , hi,j)← LeafCommit(kα, iv, i+ L− 1, uhashi)

35 :

36 : hi ← H1(hi,0∥ . . . ∥hi,Ni)

37 : com← H1(h0∥ . . . ∥hτ−1)

38 : return (com,
(
sdi,j)j∈[0..Ni)\{∆i}

)
i∈[0..τ)

Fig. 5.5: Reconstruction algorithm for batch all-but-one vector commitment



1. The τ hidden leaf commitments {comi,∆i}
τ−1
i=0 .

2. The seeds of children at internal nodes having “exactly one hidden child.” These seeds
allow re-expansion of the unmarked subtrees, but do not reveal the seeds on the fully
hidden paths.

Hence decomI ̸= ⊥ implies BAVC.Open has given the verifier sufficient information to
re-derive all unhidden leaves.

When Reconstruct is called on input decomI , it does as follows:

(a) It parses the hidden leaf commitments {comi,∆i};
(b) It re-expands the unhidden portion of the GGM tree from the revealed node seeds;

(c) It runs the same leaf-commit function to get (sdi,j , comi,j) for j ̸= ∆i. All expansions
are deterministic, so by comparing with BAVC.Commit’s expansions, one sees that sdi,j
and comi,j must coincide for the unhidden leaves.

Finally, BAVC.Reconstruct re-computes the vector-level partial commitments

hi = H1

(
comi,0∥ · · · ∥comi,Ni−1

)
and concatenates them, hashing again:

com′ = H1

(
h0∥ . . . ∥hτ−1

)
.

For unhidden leaves, comi,j are precisely the ones re-derived before. For the hidden leaves,
the partial opening decomI has already included the correct commitments comi,∆i . There-
fore the entire set {comi,j}i,j∈[Ni], j ̸=∆i

∪ {comi,∆i} matches the set from BAVC.Commit.
Hence com′ = com, except with negligible probability in the event of a hash collision.

Other than the commitment com, the BAVC.Reconstruct algorithm also returns {sdi,j}j ̸=∆i

as re-derived from the GGM expansions and leaf commits. By the same argument as be-
fore, each such sdi,j is the same as in BAVC.Commit. Meanwhile, the seeds for the hidden
indices (i,∆i) never appear in decomI and remain unknown to the verifier.

Since every unhidden seed and leaf commit re-expands to the same value, we have
that BAVC.Reconstruct(decomI , I) re-creates exactly the same com from BAVC.Commit.
No new information about the hidden leaves {sdi,∆i} is revealed, beyond the comi,∆i .
Hence, provided Open does not abort, the batch all-but-one vector commitment satisfies
correctness.

5.4 Seed Expansion and Conversion to VOLE

After committing to N random seeds using the all-but-one vector commitment, each seed
is expanded to a longer vector of Fq elements using PRG. The set of N vectors is then
converted into a VOLE correlation over FN , for N = 2d, which we represent as d VOLE
correlations over F2. Recall from Section 2.1 that this conversion requires the signer to
compute, in FN

u =

N−1∑
i=0

PRG(sdi), v =

N−1∑
i=0

i · PRG(sdi),

where PRG expands each seed to a vector in {0, 1}ℓ̂ and i is viewed as an element of FN .
The verifier, when given some index ∆ and sdi for all i ̸= ∆, will compute

q =
N−1∑
i=0

(∆− i) · ri
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Instead of computing the above directly, the signer and verifier use a divide-and-
conquer method [Roy22] to iteratively compute the vectors vj and qj , which represent
the j-th bits extracted from v,q. This algorithm is shown in Figure 5.6.

This algorithm is run by the prover using all N seeds sdi, while the verifier will run
the same algorithm where one of the seeds is unknown. It therefore sets one of the seeds
to ⊥ and ignores the u part of the output. For correctness, the verifier must additionally
permute its seeds according to the permutation i 7→ i⊕∆.

ConvertToVOLE(sd0, . . . , sdN−1, iv, twk; ℓ̂)

Input: sdi ∈ {0, 1}λ, iv ∈ {0, 1}128, twk ∈ {0, 1}32, ℓ̂ ∈ N

Output: u,vi ∈ {0, 1}ℓ̂

1 : d := logN

2 : r0,0 := 0ℓ̂ if sd0 = ⊥ else PRG(sd0, iv, twk; ℓ̂)

3 : for i ∈ [1..N) do

4 : r0,i := PRG(sdi, iv, twk; ℓ̂)

5 : v0 := · · · := vd−1 := 0ℓ̂

6 : for j ∈ [0..d) do

7 : for i ∈ [0..N/2j+1) do

8 : vj := vj ⊕ rj,2i+1

9 : rj+1,i := rj,2i ⊕ rj,2i+1

10 : u := rd,0

11 : return (u,v0, . . . ,vd−1) ∈ (Fℓ̂
2)

d+1

Fig. 5.6: Seed expansion and conversion to VOLE

When run by prover and verifier on consistent inputs, the ConvertToVOLE algorithm
gives the following correlation guarantee.

Proposition 5.2. Let (sd0, . . . , sdN−1) and (sd′0, . . . , sd
′
N−1) be seeds such that sd′i =

sdi⊕∆ for all i > 0, for some ∆ ∈ [0..N), and sd′0 = ⊥. Then, if

(δ0, . . . , δd−1) := BitDec(∆, d), (u,v0, . . . ,vd−1) := ConvertToVOLE(sd0, . . . , sdN−1; ℓ̂),

and
(u′,q0, . . . ,qd−1) := ConvertToVOLE(sd′0, . . . , sd

′
N−1; ℓ̂),

it holds that
qj = vj ⊕ δj · u, for j ∈ [0..d).

Proof. For convenience, we will consider the inputs of the algorithm with the PRG already
applied, i.e. view the strings r0,0, . . . , r0,N−1 as the prover’s input. Denoting the verifier’s
input by r′0,1, . . . , r

′
0,N−1, so it holds that r′0,i = r0,i⊕∆ for all i > 0.

First, we consider the rj,i values computed by the prover. For the value r1,i we see that
r1,0 = r0,0 ⊕ r0,1, r1,1 = r0,2 ⊕ r0,3 etc. Hence for r2,0 we obtain r2,0 = r1,0 ⊕ r1,1 = r0,0 ⊕
· · · ⊕ r0,3. We can therefore write rj,i =

∑(i+1)·2j−1
k=i·2j r0,k and u = rd,0 = r0,0⊕ · · · ⊕ rN−1,0.

We now argue correctness by induction on d. With d = 1, the prover, on input

(r0,0, r0,1), obtains output v0 = r0,1 and u = r0,0 ⊕ r0,1. The verifier, on input (0ℓ̂, r′0,1 =
r0,1⊕∆), outputs q0 = r0,1⊕∆, which equals v0 ⊕∆ · u as required. Suppose the algorithm
is correct for inputs of length N/2 = 2d−1. We first show that the j = 0 output is correct

for inputs of length N . The prover’s relevant output is v0 =
⊕N/2−1

i=0 r0,2i+1, the sum of
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all the odd-indexed r0 values. On the verifier’s side, if δ0 = 0 then q0 = v0. Otherwise, if
δ0 = 1 then q0 is the sum of all the even-indexed r0 values, because for all i ∈ [0..N/2) we
have r′2i+1 = r(2i+1)⊕∆, and (2i+1)⊕∆ is even. It follows that q0⊕v0 =

⊕N−1
i=0 ri = δj ·u.

When j = 1, we can see the remaining iterations as recursively running the same algo-
rithm again, but on the set ofN/2 inputs r1,0, . . . , r1,N/2−1 by the prover and r′1,0, . . . , r

′
1,N/2−1

by the verifier. Let ∆′ =
∑d−1

j=1 2
j−1δj , so ∆ = 2∆′ +∆0. For i > 0, it holds that

r′1,i = r0,2i⊕∆ ⊕ r0,(2i+1)⊕∆ = r0,2i⊕∆ ⊕ r0,2i⊕∆⊕1

= r0,2(i⊕∆′) ⊕ r0,2(i⊕∆′)⊕1 = r1,i⊕∆′

Therefore, in the recursive step, the verifier’s inputs for i > 0 are a permutation of the
prover’s, according to i 7→ i ⊕ ∆′. By the induction hypothesis, it follows that the final
outputs vj ,qj , for j = 1, . . . , d− 1, satisfy qj = vj ⊕ δj · u.

5.5 VOLEitH: Commitment and Reconstruction

The main FAEST algorithms use the vector commitments and ConvertToVOLE procedure to
commit the signer to a batch of τ VOLE instances of length ℓ̂. These are later verified, when
the prover is challenged to open all-but-one of each set of vector commitment messages,
allowing the verifier to reconstruct its VOLE output.

We describe this with the following three algorithms.

5.5.1 Challenge Decomposition. Let chall be a challenge bit string of length λ and
0 ≤ i < τ0+τ1 be an integer, the algorithms DecodeChall3 and DecodeAllChall3(Figure 5.7)
work together to generate the challenges for the τ VOLE instance from chall. The param-
eters τ, τ1, τ0, k and wgrind define precisely how chall is split into different challenges. More
precisely, for every i ∈ [0..τ − 1], DecodeAllChall3 compiles the full list of sub-challenges
∆0, . . . ,∆τ−1 and returns them. Each ∆i is thus derived by a distinct chunk of chall,
mapped to either k-bit or (k − 1)-bit blocks according to whether i < τ1 or i ≥ τ1.

When DecodeAllChall3 is called, it begins by iterating over all i ∈ [0..τ − 1]. For each
i, it calls DecodeChall3(chall, i; param). That function first checks whether i is within the
valid range. If this is not the case, the function aborts; otherwise, DecodeChall3 treats
chall as a bitstring of length λ−wgrind. Then the function branches on whether i < τ1. In
this way, each challenge sub-block can have either length k or k − 1, depending on which
partition of chall it falls into.

Once the appropriate substring indices are chosen, DecodeChall3 extracts the corre-
sponding slice of chall and returns it. The DecodeAllChall3 procedure then takes that
returned bitstring, interprets it as an integer via NumRec, and stores it as ∆i.

5.5.2 VOLE Commitment. The algorithms VOLECommit and VOLEReconstruct use
the sub-procedures from our batch all-but-one vector commitment to turn committed
values into the sender values of VOLE correlations as well as to create the receiver parts
of VOLE correlations from commitment openings, respectively.

The algorithm VOLECommit() takes as input a λ-bit seed r, a 128-bit initialization
vector iv, and a parameter ℓ̂. It outputs a commitment com, a decommitment decom, a
set of “correction” vectors {c1, . . . , cτ−1}, the secret vector u for the VOLE correlation,
and a matrix V whose columns are the vectors v of the τ VOLEs.

First, the algorithm invokes BAVC.Commit(r, iv; param, paramVOLE) to perform a single
batch all-but-one vector commitment over all τ VOLE vectors. This call creates one large
GGM tree and returns a global commitment com, a decommitment structure decom with
all internal and leaf values, and the per-leaf seeds sdi,j for each vector i ∈ [0..τ − 1]).
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DecodeChall3(chall, i; param)

1 : If i ̸∈ [0 . . . τ0 + τ1) then abort

2 : Parse chall ∈ {0, 1}λ−wgrind

3 : if i < τ1 then

4 : lo := i · k
5 : hi := (i+ 1) · k − 1

6 : else

7 : t := i− τ1

8 : lo := τ1k + t(k − 1)

9 : hi := τ1k + (t+ 1)(k − 1)− 1

10 : return chall[lo . . . hi]

DecodeAllChall3(chall; param)

1 : for i ∈ [0..τ) do

2 : ∆i ← NumRec(DecodeChall3(chall, i; param))

3 : return (∆0, . . . ,∆τ−1)

Fig. 5.7: Challenge decoding algorithm

Next, the function loops over each vector i. For each such vector, it calls the function
ConvertToVOLE(sdi,0, . . . , sdi,Ni−1, iv, i + 231; ℓ̂). This function merges the seeds sdi,j into

one ℓ̂-bit secret ui and a set of column vectors vi,0, . . . ,vi,ki−1. The column vectors are

placed in a matrix Vi ∈ Fℓ̂×ki
2 , where each column is ℓ̂ bits. After doing this for all τ

vectors, the procedure concatenates these sub-matrices (plus any zero-padding) into a

global matrix V ∈ Fℓ̂×λ
2 . This generates τ · ℓ̂ VOLE correlations with different secrets ui.

To correct the sender secret to the same secret vector, the algorithm designates u0 from
the first vector as the secret u, and, for each i ≥ 1, it computes ci = u0 ⊕ ui. These
“correction” vectors allow the other VOLE instances to share the same underlying secret
u. Finally, the function returns com, the decommitment decom, all correction vectors {ci},
the secret u, and the large matrix V.

FAEST.VOLECommit(r, iv, ℓ̂; param, paramVOLE)

Input: r ∈ {0, 1}λ, iv ∈ {0, 1}128

Output: com ∈ {0, 1}2λ, decom ∈ {0, 1}nleafcomλτ+Topenλ, ci,u ∈ {0, 1}ℓ̂,V ∈ {0, 1}ℓ̂×λ

1 : (com, decom, (sdi,0, . . . , sdi,Ni−1)i∈[0,τ))← BAVC.Commit(r, iv; param, paramVOLE)

2 : τ0 := λ mod τ

3 : for i ∈ [0..τ) do

4 : (ui,vi,0, . . . ,vi,kb−1) := ConvertToVOLE(sdi,0, . . . , sdi,Ni−1, iv, i+ 231; ℓ̂)

5 : Vi := [vi,0 · · ·vi,ki−1] ∈ Fℓ̂×ki
2 // stored in column major representation

6 : V := [V0 · · ·Vτ−1 0ℓ̂,w] ∈ Fℓ̂×λ
2 // 0 is (ℓ̂× w) bits of zero-padding

7 : u := u0

8 : for i ∈ [1 . . . τ) do

9 : ci := u⊕ ui

10 : return (com, decom, c1, . . . , cτ−1,u,V)

Fig. 5.8: FAEST VOLE commitments

5.5.3 VOLE Reconstruction Once the signer has committed to its execution of the
VOLEitH protocol with VOLECommit, the verifier can use the commitments, together with

Top of Section 5 34 Table of Contents



the challenge that generates the ∆i keys, to reconstruct the matching VOLE keys using
VOLEReconstruct.

FAEST.VOLEReconstruct(chall3, decomI , c1, . . . , cτ−1, iv, ℓ̂; param, paramVOLE)

Input: chall3 ∈ {0, 1}λ, decomI ∈ {0, 1}nleafcomλτ+Topenλ, ci ∈ {0, 1}λ, iv ∈ {0, 1}128

Output: com ∈ {0, 1}λ,Q ∈ {0, 1}ℓ̂×λ

1 : I = (∆0, . . . ,∆τ−1)← DecodeAllChall3(chall3)

2 : if I = ⊥ then return ⊥
3 : else do

4 : rec := (com, (sdi,0, . . . , sdi,Ni−1)i∈[0..τ))← BAVC.Reconstruct(decomI , I, iv; param)

5 : if rec = ⊥ then return ⊥
6 : else

7 : for i ∈ [0 . . . τ) do

8 : for j ∈ [1 . . . Ni) do

9 : sd′i,j ← sdi,j⊕∆i // XOR j and ∆i as bit-strings

10 : (u′
i,qi,0, . . . ,qi,ki−1) := ConvertToVOLE(⊥, sd′i,1, . . . , sd′i,Ni−1, iv, i+ 231; ℓ̂)

11 : (δi,0, . . . , δi,ki)← BitDec(∆i, ki)

12 : if i = 0 then

13 : Qi := [qi,0 · · ·qi,ki−1] ∈ Fℓ̂×ki
2 // stored in column major representation

14 : else

15 : Qi ← [qi,0 · · ·qi,ki−1] + [δi,0 · ci · · · δi,ki−1 · ci] ∈ Fℓ̂×ki
2

16 : Q := [Q0 · · ·Qτ−1 0ℓ̂,w] ∈ Fℓ̂×λ
2 // 0 is (ℓ̂× w) bits of zero-padding

17 : return (com,Q)

Fig. 5.9: FAEST VOLE reconstruction

More concretely, the algorithm VOLEReconstruct takes, as input, a λ-bit challenge
chall3, a partial decommitment decomI from the all-but-one vector commitment, a set of
correction vectors {ci}, a 128-bit iv, and a VOLE length ℓ̂. It returns both the commitment
com (verifying consistency with the committed values) and a matrix Q that encodes the
receiver’s VOLE messages.

First, the algorithm decodes chall3 into ∆0, . . . ,∆τ−1 by calling

I = (∆0, . . . ,∆τ−1) ← DecodeAllChall3(chall3).

Each ∆i indicates which leaf in the i-th vector remains hidden. Next, it partially recon-
structs the batch vector commitment by invoking(

com, (sdi,0, . . . , sdi,Ni−1)i∈[0..τ)
)
← BAVC.Reconstruct(decomI , I, iv; param).

This call returns commitment com (matching the one from VOLECommit) and, for every
i, all leaf seeds except for the one at index ∆i. The algorithm then iterates over each
vector i. Within each vector, it applies ConvertToVOLE on input seeds sd′i,j = sdi,j⊕∆i ,
returning

(
u′i, qi,0, . . . ,qi,ki−1

)
(Proposition 5.2). Additionally, it interprets ∆i as bits

(δi,0, . . . , δi,ki−1). If i = 0, the resulting columns qi,j are stored directly in Q0. If i ≥ 1,
each column qi,j is “shifted” by δi,j · ci to make it consistent with the main VOLE secret
u0 from VOLECommit. Finally, it concatenates Qi for all i (possibly with a zero-padding

block 0ℓ̂,w) into a single matrix Q ∈ Fℓ̂×λ
2 . At the end, the function outputs the recovered

commitment com and the matrix Q, which together allow the verifier to validate that
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the partial opening and VOLE messages correspond to the original batch commitment
generated by FAEST.VOLECommit.
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6 Zero-Knowledge Constraints for AES and Rijndael

This section specifies how to compute the QuickSilver proof of knowledge of the OWF for
the FAEST. Before jumping into the details, we first introduce the VOLE commitment
notation and its operations and then give a high level overview of how an AES-128 en-
cryption under a secret key k ∈ {0, 1}128 can be performed efficiently using the VOLE
commitment scheme.

6.1 VOLE-ZK Operations

We use the notation ⟨x⟩e to denote that a value x ∈ F2e , where e is 2 or λ, has been
committed through VOLE. This means the signer knows x and a value x0 ∈ F2λ , and the
verifier knows γx := x0 + x ·∆, where ∆ ∈ F2λ is the VOLE-ZK challenge.

We generalize this to degree-d commitments, as follows.

Definition 6.1 (VOLE Commitment). Let x ∈ F2e be known to P. We write ⟨x⟩de
to represent a degree-d, VOLE commitment to x, meaning that P knows the coefficients
of a commitment polynomial ρx(X) = ρ0 + ρ1 · X + · · · + ρd · Xd, where ρd = x and
ρ0, . . . , ρd−1 ∈ F2λ, and V holds the evaluation γx = ρx(∆), for a key ∆ ∈ F2λ.

We need to perform various operations on VOLE-committed values, detailed in Fig-
ure 6.1.

Remark 6.2.

– When computing constraints, we usually end up with some commitment ⟨z⟩d such
that z is supposed to be zero. In these cases, the signer does not need to store the
full polynomial, since the highest coefficient (z) is known to be zero. This can also
save computation, since when computing ⟨z⟩d, the signer can skip computation of the
degree-d coefficient.

– By convention, if [d] is omitted, we assume d = 1. Similarly, if [e] is omitted, we assume
e = 2.

Signer: VOLE-ZK operations

// Represent ⟨x⟩de as (x0, . . . , xd−1, x) ∈ Fd
2λ
× F2e ,

// coefficients of ρx(X) = x0 + x1X + · · ·+ xXd

Add: ⟨x⟩d1e1 + ⟨y⟩d2e2 → ⟨z⟩
d
e

(where d = max(d1, d2), e = max(e1, e2))

1 : ρz(X)← Xd−d1 · ρx(X) +Xd−d2 · ρy(X)

2 : return (z0, . . . , zd) (coeffs of ρz)

Add Constant: ⟨x⟩de + c→ ⟨z⟩de
3 : return ρz(X)← ρx(X) +Xd · c
Multiply: ⟨x⟩d1e1 · ⟨y⟩

d2
e2 → ⟨z⟩

d
e

(where d = d1 + d2, e = max(e1, e2))

4 : ρz(X)← ρx(X)ρy(X)

5 : return (xy, z1, . . . , zd1+d2) (coeffs of ρz)

Verifier: VOLE-ZK operations

// Represent ⟨x⟩de as γx ∈ F2λ

// Verifier also holds global key ∆ ∈ F2λ

Add: ⟨x⟩d1 + ⟨y⟩d2 → ⟨z⟩d

return ∆d−d1 · γx +∆d−d2 · γy
Add Constant: ⟨x⟩de + c→ ⟨z⟩de

return γz = γx +∆d · c
Multiply: ⟨x⟩d1 · ⟨y⟩d2 → ⟨z⟩d

return γx · γy

Fig. 6.1: VOLE-ZK operations. The extension degrees e, e1, e2 may be any combination in {2, λ}. The
output degree d is always 1, 2, or 3.
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Lemma 6.3. Let ⟨x⟩de be a VOLE commitment. Assume that P sends ρ′ ∈ F2λ to V such
that deg(ρ′) ≤ d but ρd ̸= x. Let V accept if ρ′(∆) = γx, and otherwise reject. Then V
accepts with probability at most d/2λ.

Proof. By definition, we have that γx = ρ(∆). Since ρ′ ̸= ρ as x′ ̸= x. As ρ′(X) = ρ(X) for
at most d choices of X ∈ F2λ (as otherwise ρ′ = ρ by the fundamental theorem of algebra)
and since ∆ is chosen uniformly at random and independent of ρ′, the claim follows.

6.2 An overview of the OWF evaluation using VOLE commitments

An overview of the OWF evaluation is also given in Figure 6.2. At the outset, we assume
that the prover has committed to the individual bits of k as ⟨k1⟩11, . . . , ⟨k128⟩11.

Computing the key expansion. Towards computing KeyExpansion on the aforementioned
commitments to obtain commitments ⟨k̄1⟩11, . . . , ⟨k̄λ(R+1)⟩11 to k̄, all operations besides Sub-
Word can be performed directly on either ⟨k1⟩11, . . . , ⟨k128⟩11 or on commitments to outputs
of SubWord without increasing the degree. Therefore, for every input a to SubWord in Key-
Expansion, the prover will commit to b = SubWord(a) as the bits ⟨b1⟩11, . . . , ⟨b32⟩11. This, as
mentioned above, then allows to obtain degree-1 commitments of all bits of k̄ such that the
commitments each are of degree d = 1. To check that the commitments ⟨b1⟩11, . . . , ⟨b32⟩11
to the outputs are actually consistent with the inputs a for SubWord (or rather, with the
input commitments ⟨a1⟩11, . . . , ⟨a32⟩11), we perform the following operations:

1. Apply the inverse of step 2 of SubBytes on each byte of b, leading to commitments
⟨b1⟩11, . . . , ⟨b32⟩11. Note that the computation is only linear.

2. Let α ∈ F28 be the element generating F28 from F2. For each byte, do the following as
exemplified for the first byte of a, b: set ⟨â⟩18 =

∑8
i=1⟨ai⟩11 · αi−1 and ⟨b̂⟩18 =

∑8
i=1⟨bi⟩18.

Then check that the first step of the AES S-box holds.

To verify the first step, we verify that ⟨b̂2⟩18 · ⟨â⟩18−⟨b̂⟩18 as well as ⟨â2⟩18 · ⟨b̂⟩18−⟨â⟩18 are
commitments to 0. This is sound, due to the following:

Proposition 6.4. Let F be a field and x, y ∈ F. If x2 · y = x and x · y2 = y, then

– either x ̸= 0 and y = x−1; or
– x = y = 0.

Proof. Assume that x ̸= 0. Dividing both sides of x2 · y = x by x shows that y = x−1.
Assume that x = 0. By the second equation, we then have that x · y2 = 0 = y.

Note that, in the process, this only generates commitments of degree 2: computing
â2 from â is a F2-linear operation - by computing the linear operation on the ⟨ai⟩11-
commitments before lifting to F28 we can compute the square without a multiplication.
This observation also holds for b̂2.

Evaluating the round functions of AES. Both the input block x ∈ {0, 1}128 and the output
block y ∈ {0, 1}128 of the AES-128 instance that we compute on the commitments are
defined by the verification key. Moreover, consistent commitments (of degree 1) to the bits
of the round key for each round are available as described above. We therefore evaluate
Encrypt on input in = x with commitments ⟨k̄1⟩11, . . . , ⟨k̄λ(R+1)⟩11 to the round keys, using
the homomorphism of the commitment scheme, and revealing that the commitment to
out as being identical to y.

Just like KeyExpansion, all the operations in the AES round function are F2-linear,
except for the inversion in the S-box. Therefore, one can use the same approach as for
evaluating KeyExpansion, i.e., by committing to the output bits of SubBytes and checking
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Fig. 6.2: A diagrammatic overview of the QuickSilver proof of knowledge of two consecutive AES rounds
in FAEST. The FAEST-EM version is similar, except that the AES key is public, so the key schedule is
evaluated in the clear, rather than on degree-1 VOLE commitments.



consistency using relations of the form x2 · y = x and x · y2 = y. This approach was used
in the Round-1 version of FAEST and requires to generate (R− 1) · 128 bit-commitments
to commit to the outputs of each SubBytes-instance except the last SubBytes instances15.

Using field norm to optimize inversions. In the round-2 version, we use the norm NF28/F24

to evaluate each S-Box more efficiently. We treat odd and even rounds differently, where
we will commit to the full state in even rounds, and commit only to λ/2 bits in odd rounds,
which results in only having to commit to approximately (R−1) ·96 bits. In a nutshell the
idea is that in even rounds, we do not commit to the full output of the inversion a−1 in the
S-box, but we only commit to its norm c = NF28/F24

(a−1) = a−17, which is an element of

F16 and therefore only needs half as many bits to represent. Because a−1 = a16 ·a−17 we can
obtain a commitment to the inverse a−1 by first computing a16 (whose bits are F2-linear
combinations of the bits of a), and then multiplying it by the inverse norm NF28/F24

(a−1).

Computing on Galois Conjugates. A slight complication is that this trick only lets us
compute a commitment to the field element a−1, not a commitment to the 8 bits of a−1.
This only allows us to perform F256-linear operations on the VOLE commitments, which
is a problem, because the affine part of the S-box is F2-linear but not F256-linear. To work
around this, we compute commitments to all the Galois conjugates of a−1, i.e., commit-
ments to a−1, a−2

1
, . . . , a−2

7
. This is done by doing bit operations to compute commitments

to all the conjugates of a and c = NF28/F24
(a−1), and then doing 8 multiplications to get

commitments to all the conjugates of a−1, i.e., using a−1 = a16 ·c, a−2 = a32 ·c2, etc. Since
any F2-linear function can be expressed as a F256-linear combination of Galois conjugates
(Remark 4.3), this allows us to compute the affine part of the S-box.

Checks. Finally, we need to verify the consistency of the committed bits. For even rounds,
we need to check for every inversion that the provided c is indeed equal to NF28/F24

(a−1),
where a is the input to the S-box, which is computed from the commitment to the state
in the previous round. This is done by checking that c · a2 · a16 = a, which is a degree-3
constraint. For odd rounds, we need to check that the inputs and outputs of the inversions
in the S-box are consistent. For an inversion with input x, and output y this is done by
checking that x2 · y = x and x · y2 = y. Note that, since we have degree-1 commitments to
the bits of y, we can derive a degree-1 commitment for y2 by doing bit operations on the
commitments. However, since we only have degree-2 commitments to x as field elements,
the naive approach to compute x2 as x · x would result in a degree-4 commitment to x2,
which makes x2y = x a degree-5 constraint. To avoid this, we compute x2 directly, by
applying the appropriate operations to the conjugates of the output of the previous layer
of inversions. This essentially means we compute SBoxAffine, ShiftRows, MixColumns, and
AddRoundKey twice, once normally to compute x, and once starting from the squared state
and doing modified versions of the AES operations where all the constants (including the
round’s subkey) are replaced by their squares, to compute the degree-2 commitment to x2

(see Figure 6.2). With this approach we can compute degree-3 commitments to x2y − x
and xy2 − y, which are later checked to be commitments to zero.

Now we proceed with a more formal specification of the AES proof. The principal
FAEST algorithms use the following building blocks to perform AES and Rijndael related
operations to compute the QuickSilver proof of knowledge of the OWF for the FAEST-λ
parameter sets.

– Section 6.5: FAEST.ExtendWitness in Figure 6.15

15Their output bits can be derived from the bits of y after reversing the linear operations and by
subtracting the last round key.
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ZK.ByteCombine(⟨x0⟩2, . . . , ⟨x7⟩2;λ)

Input: Committed bits xi ∈ F2

Output: Committed x ∈ F2λ , containing embedded F28 element

1 : let α8 ∈ F2λ // Basis element of F28 within F2λ

2 : return ⟨x⟩λ =
∑7

i=0⟨xi⟩2 · αi
8

Fig. 6.3: Lifting 8 committed bits to a single commitment

StateToBytes(⟨state⟩)

Input: ⟨state⟩ is an array of Nst-bits commitments to bits

Output: Nst-bytes-byte array ⟨out⟩
1 :

2 : new ⟨out⟩λ := new array of Nst-bytes committed bytes

3 : for i ∈ [0..Nst-bytes − 1) do

4 : // extract a chunk of 8 bits

5 : ⟨bt⟩λ := ZK.ByteCombine(⟨state[8 · i..8 · i+ 7]⟩)
6 : ⟨out⟩λ := ⟨out∥bt⟩λ
7 : return ⟨out⟩λ

Fig. 6.4: Converting the AES state matrix to an Nst-bytes-byte array in column-major order.

InvNorm(x)

Input: x ∈ {0, 1}8

Output: y ∈ {0, 1}4

1 : x← ToField(x, 8)

2 : if x = 0 then

3 : return (0, 0, 0, 0)

4 : y′ ← ToBits(1/x17)

5 : y← (y′[0],y′[6],y′[7],y′[2])

6 : return y

Fig. 6.5: Inverse F24 norm function

– Section 6.6: FAEST.KeyExpFwd in Figure 6.16.
– Section 6.6: FAEST.KeyExpBkwd in Figure 6.17.
– Section 6.6: FAEST.KeyExpCstrnts in Figure 6.18.
– Section 6.7: FAEST.EncCstrnts in Figure 6.20.

Before introducing these procedures, we describe some more elementary building blocks.

6.3 Building Blocks for AES in VOLE-ZK

This section introduces some basic functions used to implement the VOLE-based zero-
knowledge proof for AES operations.

– ZK.ByteCombine (Figure 6.3): It combines vectors of committed 8 bits into one com-
mitted field element of F2λ , which embeds an F28 element consistent with the AES
polynomial representation.

– StateToBytes (Figure 6.4): The function converts a committed state array given as an
array of Nst-bits to a committed byte array out.
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InvNormToConjugates(⟨x⟩ = (⟨x0⟩, . . . , ⟨x3⟩))

Input: ⟨x⟩, where xi ∈ F2

Output: ⟨y⟩λ, where y ∈ F4
2λ and yj = y2j

0 for j > 0

1 : let α8 ∈ F2λ // Defines basis for F28 within F2λ

2 : // F24 basis defined by β4 = α6
8 + α4

8

3 : for j ∈ [0..4) do

4 : ⟨yj⟩λ ← (1, β2j

4 , β2j+1

4 , β3·2j
4 ) · ⟨x⟩2 // inner product

5 : return (⟨y0⟩λ, . . . , ⟨y3⟩λ)

Fig. 6.6: Lift the inverse norm to F28 (embedded in F2λ) and compute all its F2 conjugates

– InvNorm (Figure 6.5): For each S-box with input x ∈ F28 , viewed as an extension of
F24 , we compute the field norm NF28/F24

(1/x) = 1/x17. The result is an element of
F24 , embedded into F28 . We reverse the embedding by extracting 4 relevant bits of the
result, and include this in the extended witness. The algorithm InvNorm defines these
bits using the basis b = (1, β, β2, β3) for F24 over F28 , where β = α6 +α4 and α is the
basis element of F28 . That is, given an output y← InvNorm(x) ∈ {0, 1}4, the norm of
1/x equals the inner product b · y ∈ F28 .

– InvNormToConjugates (Figure 6.6): This procedure lifts a committed 4-bit representa-
tion (output of InvNorm) of an F24 element to a commitment in F2λ and computes all
its Frobenius conjugates (i.e., y, y2, y4, y8).

– SquareBits,SquareAndCombine (Figure 6.7): It computes the square of VOLE commit-
ments bit-by-bit within F28 . It crucially uses the linearity of the (Frobenius) map in
characteristic 2. SquareBits takes bits as input and returns bits, while SquareAndCombine
lifts the bits to F28 before outputting the committed field element.

– F256/F2.Conjugates (Figure 6.7): the algorithm computes the conjugates of F28 field
elements through repeated squaring operations. The algorithm takes as input com-
mitments to state bits, and outputs a vector of commitments corresponding to the
conjugates of each bytes in the state treated as F28 field elements.

6.4 Building Blocks for AES and Rijndael in VOLE-ZK

In this section, we describe the core AES/Rijndael operations in the context of a VOLE-
based ZK proof. We focus on how each operation can be implemented on committed data
with specific degrees, i.e., linear or quadratic.

6.4.1 S-Box Affine Component. The function ZK.SBoxAffine in Figure 6.8 applies
the S-box’s affine map to a committed byte (or set of bytes) in F28 . More specifically, it
takes as input:

– A set of degree-2 commitments ⟨xj⟩, each corresponding to (x0)
2j for j = 0, . . . , 7.

Here, x0[i] is the i-th byte of the input, and xj [i] is its 2j-power (a conjugate in
characteristic 2).

– A flag sq that indicates whether we apply the map in its usual form (sq = false) or
we apply its square version (sq = true).

Internally, ZK.SBoxAffine linearly combines the conjugates x2j
0 using constants ζ0, . . . , ζ7, ζ8.

If sq is set, each constant ζk is squared, and an index shift t = 1 is used. The result is an
F28 value for each byte position i, returned as ⟨y⟩.
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SquareBits(⟨x0⟩d, . . . , ⟨x7⟩d)

1 : ⟨y0⟩d ← ⟨x0⟩d + ⟨x4⟩d + ⟨x6⟩d

2 : ⟨y1⟩d ← ⟨x4⟩d + ⟨x6⟩d + ⟨x7⟩d

3 : ⟨y2⟩d ← ⟨x1⟩d + ⟨x5⟩d

4 : ⟨y3⟩d ← ⟨x4⟩d + ⟨x5⟩d + ⟨x6⟩d + ⟨x7⟩d

5 : ⟨y4⟩d ← ⟨x2⟩d + ⟨x4⟩d + ⟨x7⟩d

6 : ⟨y5⟩d ← ⟨x5⟩d + ⟨x6⟩d

7 : ⟨y6⟩d ← ⟨x3⟩d + ⟨x5⟩d

8 : ⟨y7⟩d ← ⟨x6⟩d + ⟨x7⟩d

9 : return (⟨y0⟩d, . . . , ⟨y7⟩d)

SquareAndCombine(⟨x0⟩, . . . , ⟨x7⟩)

1 : ⟨y0⟩, . . . , ⟨y7⟩ ← SquareBits(⟨x0⟩, . . . , ⟨x7⟩)
2 : return ZK.ByteCombine(⟨y0⟩, . . . , ⟨y7⟩)

F256/F2.Conjugates(⟨s0⟩, . . . , ⟨sNst-bits−1⟩)

1 :Input: ⟨si⟩: VOLE commitments to state bits

Output: ⟨yi,j⟩8, for i ∈ [0..Nst-bytes), j ∈ [0..8): commitments to the conjugates of each byte in the state

2 : for i ∈ [0..Nst-bytes) do

3 : ⟨x0⟩ := (⟨s8i⟩, . . . , ⟨s8i+7⟩)
4 : for j ∈ [0..6] do

5 : // Compute conjugates x2j by repeated squaring in F28

6 : ⟨yi,j⟩8 ← ZK.ByteCombine
(
⟨xj⟩, λ

)
7 : ⟨xj+1⟩ ← SquareBits

(
⟨xj⟩

)
8 : ⟨yi,7⟩8 ← ZK.ByteCombine

(
⟨x7⟩, λ

)
9 :

10 : return (⟨y0,0⟩8, . . . , ⟨yNst-bytes−1,7⟩8)

Fig. 6.7: Bitwise squaring and conjugates of VOLE commitments in F28

Inverse Affine Map. The inverse affine map, Figure 6.9, processes the entire state by
operating on each byte, where each byte is represented by eight degree-1 commitments to
bits, ⟨xi,0⟩, . . . , ⟨xi,7⟩. For each byte i and bit position j ∈ {0, . . . , 7}, the inverse affine
transformation is computed as

yi,j = xi,(j−1) mod 8 ⊕ xi,(j−3) mod 8 ⊕ xi,(j−6) mod 8 ⊕ cj ,

where cj equals 1 if j ∈ {0, 2} and 0 otherwise. In the implementation, the constant bit
cj is converted into a VOLE commitment using the function ConstantToVOLE(cj), which
maps the Boolean constant cj to its corresponding commitment.

6.4.2 MixColumns, ShiftRows and AddRoundKey We describe here the remain-
ing AES/Rijndael operations.

- ZK.MixColumns (Figure 6.10): This procedure implements the MixColumns transforma-
tion on committed state bytes. It takes as input a sequence of degree-2 commitments
to bytes (elements of F28) and, depending on the flag sq, optionally squares the mixing
constants. The output is a new sequence of degree-2 commitments obtained by mixing
each column according to the MixColumns linear transformation.

- ZK.BitwiseMixColumns (Figure 6.11): This procedure performs the MixColumns oper-
ation at the bit level on the committed state bits. It processes the state byte-by-byte
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ZK.SBoxAffine( ⟨x0,0⟩2λ, . . . , ⟨x0,7⟩2λ, . . . , ⟨xNst-bytes−1,0⟩2λ, . . . , ⟨xNst-bytes−1,7⟩2λ; sq = false )

Input: ⟨xi,j⟩2λ: degree-2 commitment to xi,j ∈ F28 ⊂ F2λ , where xi,j = x2j

0,i for j > 0; flag sq

Output: ⟨y⟩2λ, commitments to the affine component of the S-box, applied to each xi,0

1 : if sq then

2 : s← 2, t← 1

3 : else

4 : s← 1, t← 0

5 : // Define the 9 coefficients ζ0, . . . , ζ8 ∈ F2λ , where ζi = ByteCombine(χi;λ)

6 : // We can take (χ0, . . . , χ8) = (0x05, 0x09, 0xf9, 0x25, 0xf4, 0x01, 0xb5, 0x8f, 0x63) for the affine map,

7 : // and for the square version (0x11, 0x41, 0x07, 0x7d, 0x56, 0x01, 0xfc, 0xcf, 0xc2).

8 : for i ∈ [0, Nst-bytes) do

9 : ⟨yi⟩2λ ← ζs8 + ζs7 ⟨xi,7+t mod 8⟩2 + ζs6 ⟨xi,6+t⟩2 + · · · + ζs0 ⟨xi,0+t⟩2

10 : return ⟨y⟩2λ = (⟨y0⟩2λ, . . . , ⟨yNst-bytes−1⟩2λ)

Fig. 6.8: Apply the affine map (or its square) of the S-box to every component of the state, given as input
all the conjugates of each byte of the state.

ZK.InverseAffine(⟨state-bits)⟩

1 : Input: For each byte i ∈ [0, Nst-bytes), commitments ⟨xi,j⟩ to xi,j ∈ F2 for j ∈ {0, . . . , 7}.
2 : Output: For each byte i, commitments ⟨yi,j⟩ to yi,j ∈ F2 for j ∈ {0, . . . , 7}
3 : for i ∈ [0, Nst-bytes) do

4 : for j ∈ [0, 8) do

5 : cj ← 1 if j ∈ {0, 2} else 0

6 : ⟨yi,j⟩ ← ⟨xi,(j−1) mod 8⟩ + ⟨xi,(j−3) mod 8⟩ + ⟨xi,(j−6) mod 8⟩ + ConstantToVOLE(cj)

7 : return
{
(⟨yi,0⟩, . . . , ⟨yi,7⟩)

}Nst-bytes−1

i=0

Fig. 6.9: Inverse affine layer on the entire state. Each byte is processed as an 8-bit Boolean circuit in F2.

by first extracting bit-level representations of each byte, then applying a linear com-
bination (multiplication by constants in F28) and recombining the results, all while
preserving the VOLE commitment structure.

- ZK.ShiftRows (Figure 6.12): This procedure applies the ShiftRows transformation to an
AES/Rijndael state where the state is stored as an ordered list of bytes. Each byte is
represented as a VOLE commitment in F28 . Internally, the state is viewed as a 4×Nst

matrix (with Nst columns), and the procedure rotates each row r to the left by r posi-
tions (with a slight modification when Nst = 8 such that the last two rows are rotated
by r + 1 positions). The output is a commitment to resulting the shifted state.

- ZK.InverseShiftRows (Figure 6.13): This procedure reverses the ShiftRows operation on
a bit-level representation of the state. It takes as input a commitment to an Nst-bits-bit
array, and reorders the bits to undo the row rotations done by the ShiftRows step. The
output is a Nst-bits-bit array of VOLE commitments.

- ZK.AddRoundKey (Figure 6.14): This procedure implements the AddRoundKey step at
the bit level. It takes as input two arrays of degree-1 VOLE commitments for the state
bits and one for the round key bits, and outputs an array of VOLE commitments rep-
resenting the new state after the key addition. For each index i in the range [0, Nst-bits),
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ZK.MixColumns(⟨x⟩2λ, sq ∈ {0, 1})

Input: ⟨x⟩2λ = (⟨x0⟩2λ, . . . , ⟨x(Nst-bytes−1)⟩2λ), each ⟨xi⟩2λ is degree-2 commitment to xi ∈ F28 ⊂ F2λ

Output: ⟨y⟩2λ = (⟨y0⟩2λ, . . . , ⟨y(Nst-bytes−1)⟩2λ), each ⟨yi⟩2λ is degree-2 commitment to yi ∈ F28 ⊂ F2λ

1 : // Flag sq determines whether to square the matrix constants.

2 : // Let ν1 ← ByteCombine({01};λ), ν2 ← ByteCombine({02};λ), ν3 ← ByteCombine({03};λ).

3 : // If sq = 1, then replace each νi by its square in F28 : ν1 ← ν21 , ν2 ← ν22 , ν3 ← ν23

4 : for c ∈ [0..Nst) do

5 : i0 ← 4c, i1 ← 4c+ 1, i2 ← 4c+ 2, i3 ← 4c+ 3

6 : // Compute ⟨y[i0..i3]⟩ via (2, 3, 1, 1) or (4, 5, 1, 1) in F28 .

7 : ⟨yi0⟩2λ ← ⟨xi0⟩2λ · ν2 + ⟨xi1⟩2λ · ν3 + ⟨xi2⟩2λ · ν1 + ⟨xi3⟩2λ · ν1
8 : ⟨yi1⟩2λ ← ⟨xi0⟩2λ · ν1 + ⟨xi1⟩2λ · ν2 + ⟨xi2⟩2λ · ν3 + ⟨xi3⟩2λ · ν1
9 : ⟨yi2⟩2λ ← ⟨xi0⟩2λ · ν1 + ⟨xi1⟩2λ · ν1 + ⟨xi2⟩2λ · ν2 + ⟨xi3⟩2λ · ν3

10 : ⟨yi3⟩2λ ← ⟨xi0⟩2λ · ν3 + ⟨xi1⟩2λ · ν1 + ⟨xi2⟩2λ · ν1 + ⟨xi3⟩2λ · ν2
11 : return ⟨y⟩2λ

Fig. 6.10: MixColumns with optional squared matrix depending on the flag sq on committed byte values

ZK.BitwiseMixColumns(⟨s0⟩, . . . , ⟨sNst-bits−1⟩)

Input: ⟨si⟩: VOLE commitments to state bits

Output: ⟨oi⟩: VOLE commitments to state bits after MixColumns Operation

1 : for c ∈ [0..Nst) do

2 : for r ∈ [0..4) do

3 : // Read byte from input, and multiply by α ∈ F256 = F2[α]/(α8 + α4 + α3 + α+ 1)

4 : ⟨a(r)⟩ := (⟨s32·c+8·r⟩1, . . . , ⟨s32·c+8·r+7⟩1)
5 : ⟨b(r)⟩ := ⟨(a(r)

7 , a
(r)
0 + a

(r)
7 , a

(r)
1 , a

(r)
2 + a

(r)
7 , a

(r)
3 + a

(r)
7 , a

(r)
4 , a

(r)
5 , a

(r)
6 )⟩

6 : ⟨o4c+0⟩ ← ⟨b(0) + a(3) + a(2) + b(1) + a(1)⟩
7 : ⟨o4c+1⟩ ← ⟨b(1) + a(0) + a(3) + b(2) + a(2)⟩
8 : ⟨o4c+2⟩ ← ⟨b(2) + a(1) + a(0) + b(3) + a(3)⟩
9 : ⟨o4c+3⟩ ← ⟨b(3) + a(2) + a(1) + b(0) + a(0)⟩

10 : return ⟨o0 ∥ o1 ∥ · · · ∥ o(Nst-bytes−1)⟩

Fig. 6.11: MixColumns operation performed on commitments to bits.

the output is computed as:

⟨oi⟩ ← ⟨si⟩ + ⟨ki⟩,

where the addition is performed over F2 (i.e., a bitwise XOR).

- ZK.AddRoundKeyBytes (Figure 6.14): This procedure performs the AddRoundKey op-
eration at the byte level. It takes as input an array of degree-2 VOLE commitments
representing the state bytes and an array of VOLE commitments representing the cor-
responding round key bytes, where the key commitments have degree d ∈ {1, 2}. For
each byte index i in the range [0, Nst-bytes), it computes:

⟨oi⟩2λ ← ⟨si⟩2λ + ⟨ki⟩dλ,

yielding new degree-d commitments for the state after the key addition.
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ZK.ShiftRows(⟨state⟩)

Input: state = (⟨s0⟩λ, . . . , ⟨s(Nst-bytes−1)⟩λ) in byte order (each ⟨si⟩λ is a commitment to si in F28).

Output: state′ = (⟨s′0⟩λ, . . . , ⟨s′(Nst-bytes−1)⟩λ), with each row r shifted left by r positions.

1 : // Internally, AES stores the Nst-bytes bytes in a 4×Nst matrix by column.

2 : // Let ⟨s4c+r⟩λ be the commitment corresponding to the (r, c) entry.

3 : // We rotate row r left by r positions, unless Nst = 8, when the last two rows are rotated by r + 1.

4 : for r ∈ [0..4) do

5 : for c ∈ [0..Nst) do

6 : if Nst ̸= 8 or r ∈ {0, 1} do

7 : ⟨s′4c+r⟩λ ← ⟨s4·((c+r) mod Nst)+r⟩λ
8 : else

9 : ⟨s′4c+r⟩λ ← ⟨s4·((c+r+1) mod Nst)+r⟩λ
10 : return (⟨s′0⟩λ, . . . , ⟨s′(Nst-bytes−1)⟩λ)

Fig. 6.12: ShiftRows on a committed state .

ZK.InverseShiftRows(⟨state-bits⟩)

Input: state-bits = (⟨s0⟩, . . . , ⟨sNst-bits−1⟩) ∈ {0, 1}Nst-bits , where each ⟨si⟩ is a commitment to a bit.

Output: state-bits′ = (⟨s′0⟩, . . . , ⟨s′Nst-bits−1⟩)
1 : for r ∈ [0..4) do

2 : for c ∈ [0..Nst) do

3 : if Nst ̸= 8 or r ∈ {0, 1} do // Shift left by r columns

4 : i← 4 ((c− r) mod Nst) + r

5 : else // Shift left by r + 1 columns

6 : i← 4 ((c− r − 1) mod Nst) + r

7 : (⟨s′8(4c+r)⟩, . . . , ⟨s′8(4c+r)+7⟩)← (⟨s8i⟩, . . . , ⟨s8i+7⟩)

8 : return (⟨s′0⟩, . . . , ⟨s′Nst-bits−1⟩)

Fig. 6.13: Inverse of the ShiftRows operation on a bit-level Nst-bits-bit array. The procedure reverses the
row rotations applied by ShiftRows.

6.5 Witness Extension

The AES.ExtendWitness algorithm (Figure 6.15) takes the AES key k, the FAEST pub-
lic key pk = (in,out), and the instance parameters param and paramOWF, returning an
extended witness w ∈ {0, 1}ℓ for later use. It can be divided in two main steps as follows.

Key Expansion. It first runs the AES KeyExpansion on k to get the expanded key k̄,
hence it appends the first Nk words to w as key bits. For each SubWord operation (i.e.
after every 4 or 6 words, depending on λ), the algorithm appends the 32-bit subword,
denoted as non-lin word bits, Therefore, each subword uses 32 bits in the extended
witness.

Encryption Routine. For each plaintext block b ∈ {0, 1} (depending on λ), the algo-
rithm initializes the state as inb and perform R − 1 rounds. It only stores the state bits
after each ShiftRows on odd rounds (i.e. on rounds j where 1 ≤ j < R and j mod 2 = 1).
More specifically, for each of these odd rounds, it appends Nst-bits bits of column-major
state into w, denoted as shift row bitsi. For the other rounds, if j is even, it breaks the
16 bytes of the state into {b0, . . . , b15} and appends InvNorm(byte) ∈ {0, 1}4 for each byte.
Therefore, the extended witness w ∈ {0, 1}ℓ which can be represented as:
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ZK.AddRoundKey(⟨s0⟩, . . . , ⟨sNst-bits−1⟩, ⟨k0⟩, . . . , ⟨kNst-bits−1⟩)

Input: ⟨si⟩, ⟨ki⟩: commitments to state bits and round key bits

Output: ⟨oi⟩: commitments to state bits after AddRoundKey

1 : for ∈ [0..Nst-bits) do

2 : ⟨oi⟩ ← ⟨si⟩ + ⟨ki⟩
3 : return (⟨o0⟩, . . . , ⟨oNst-bits−1⟩)

ZK.AddRoundKeyBytes(⟨s0⟩2λ, . . . , ⟨sNst-bytes−1⟩2λ, ⟨k0⟩dλ, . . . , ⟨kNst-bytes−1⟩dλ) (where d ∈ {1, 2})

Input: ⟨si⟩2λ, ⟨ki⟩dλ: degree-2 commitments to state bytes, degree-d commitments to round key bytes

Output: ⟨oi⟩dλ: degree-d commitments to state bytes after AddRoundKey

1 : for ∈ [0..Nst-bytes) do

2 : ⟨oi⟩2λ ← ⟨si⟩2λ + ⟨ki⟩dλ
3 : return (⟨o0⟩2λ, . . . , ⟨oNst-bytes−1⟩2λ)

Fig. 6.14: AddRoundKey procedure. It XORs consecutive bits or bytes of the expanded key with the current
AES/Rijndael state.

w := key bits︸ ︷︷ ︸
Nk words

∥
(
non-lin word bits

)︸ ︷︷ ︸
Ske/4 non-lin words

∥
{(

inv norm bits2i
)︸ ︷︷ ︸

16Ṅst

∥
(
odd round shift row bits2i+1

)︸ ︷︷ ︸
Nst-bits

}
i∈[0..R/2)

.

If β = 2, the algorithm similarly stores an interleaving of inv norm bits and shift row bits,
but repeats it twice for the two encryption blocks.

6.6 Deriving Constraints for the Key Expansion Routine

The KeyExpCstrnts algorithm, described in Figure 6.18, derives the constraint values re-
quired for the QuickSilver proof for the AES circuit corresponding to the key expansion. All
computations are performed directly on VOLE commitment. In particular, the algorithm
combines the outputs of two forward/backward key schedule routines, namely KeyExpFwd
(see Figure 6.16) and KeyExpBkwd (see Figure 6.17), to generate commitments to both
the round keys and the corresponding inverse outputs of the F28 S-boxes.

KeyExpFwd. Given a vector of VOLE-committed witness values ⟨w⟩, this algorithm com-
putes commitments to the R + 1 round keys for the encryption routine. It initializes the
first λ committed bits (or Nk words) of the expanded key directly from the witness values,
and then, for each subsequent word, it either directly reads the corresponding values from
⟨w⟩ (when (j mod Nk = 0) or (Nk > 6 and j mod Nk = 4), i.e, when the word j corre-
sponds to a word derived from SubWord); otherwise it computes the new word as the sum
of two previous words. The resulting commitments to the round key bits are the output
of the function.

KeyExpBkwd. To compute the outputs of the F28 inversions (i.e., to recover the S-box
inputs or outputs) during key expansion, KeyExpBkwd works entirely on VOLE commit-
ments. It selects the appropriate portions of the expanded key ⟨x⟩ and removes the byte
that was XOR-ed into the key word, using the corresponding committed key values in
⟨xkey⟩, as well as subtracting the round constant when necessary. Then, it applies the
inverse of the S-box’s F2-affine transformation to revert the final linear transformation, so
the result matches the F28 input to the S-box. To simplify writing into the output array
⟨y⟩, KeyExpBkwd iterates over the Ske S-boxes contained within the key expansion. How-
ever, since the relevant expanded key words (after the first Nk) are situated at intervals of
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FAEST.ExtendWitness(k, pk; param, paramOWF)

Input: k ∈ {0, 1}λ, pk = (in,out) ∈ {0, 1}Nst-bits·β × {0, 1}Nst-bits·β

Output: w ∈ {0, 1}ℓ: extended witness

1 : // We set EM = false if we are considering AES, otherwise false

2 : // Initialize empty extended witness array, eventually of length ℓ

3 : new w ∈ {0, 1}≤ℓ

4 : // Store round keys as array of 32-bit words

5 : new k̄ ∈ [{0, 1}32;Nst(R+ 1)]

6 : k̄← KeyExpansion(k, paramOWF)

7 : w← k̄[0..Nk − 1] // Saving the first Nk words, which contain k

8 : if EM = false then // extract key schedule witness components

9 : ik ← Nk

10 : for j ∈ [0..Ske/4) do

11 : w← w∥k̄[ik] // Saving the word that depends on SubWord

12 : if λ = 192 then ik := ik + 6

13 : else ik ← ik + 4

// Encryption routine and saving witness bits

14 : for b ∈ [0..β) do

15 : new state ∈ {0, 1}Nst-bits

16 : state← inb

17 : AddRoundKey(state, k̄[0..Nst − 1])

18 : for j ∈ [0..R− 1) do ;

19 : if j mod 2 = 0 then

20 : // Save 4-bit inverse norm of S-box inputs, packed into bytes

21 : foreach byte bi of state do

22 : w← w∥InvNorm(bi)

23 : SubBytes(state)

24 : ShiftRows(state)

25 : if j mod 2 = 1 then

26 : w := w∥state // Save S-box outputs, in column-major order

27 : MixColumns(state)

28 : AddRoundKey(state, k̄[Nst · (j + 1)..Nst(j + 2)− 1])

// Last round is not committed to, so not computed

29 : return w ∈ {0, 1}ℓ

Fig. 6.15: Extending the witness from the AES/Rijndael key and the input plaintext block(s).

either 4 (for AES128 and AES256) or 6 (for AES192), the algorithm maintains an alterna-
tive index iwd which is increased after every 4 S-box by the appropriate amount (in bits).
In addition, since once every four S-Box outputs (one out of every eight for AES256) have
the round constant added into them, we use rconEvry to track how often round constants
must be removed.

KeyExpCstrnts. The procedure derives the Ske commitments corresponding to the key ex-
pansion routine’s constraints and the round keys. It first invokes KeyExpFwd(⟨w⟩) to pro-
duce commitments ⟨k⟩ for the entire expanded key. Next, it calls KeyExpBkwd(⟨w⟩λ.., ⟨k⟩)
to reconstruct the intermediate S-box output.

After these forward/backward steps, KeyExpCstrnts groups the subwords into blocks of
four. For each subword, it extracts 8-bit chunks from ⟨k⟩ or ⟨w̄⟩ and maps them into F2λ
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FAEST.KeyExpFwd(⟨w0⟩, . . . , ⟨wℓke−1⟩; param, paramOWF)

Input: ⟨wi⟩: VOLE commitment to the i-th extended witness bit

Output: ⟨y⟩ = (⟨y0⟩, . . . , ⟨y(R+1)·128−1⟩): VOLE commitments to the round keys

1 : for i ∈ [0..λ) do

2 : ⟨yi⟩ ← ⟨wi⟩ // First Nk words

3 : iwd ← λ // Index to read words from x

4 : for j ∈ [Nk..4(R+ 1)) do // Remaining key words, R+ 1 round keys, 4 words each

5 : if j mod Nk = 0 or (Nk > 6 and j mod Nk = 4)

6 : ⟨y32j⟩, . . . , ⟨y32j+31⟩ ← ⟨wiwd⟩, . . . , ⟨wiwd+31⟩ // Selecting expanded key word bits

7 : iwd ← iwd + 32

8 : else

9 : for i ∈ [0..32) do

10 : ⟨y32j+i⟩ ← ⟨y32(j−Nk)+i⟩ + ⟨y32(j−1)+i⟩
11 : return ⟨y⟩, where y ∈ F(R+1)·128

2

Fig. 6.16: Transforming witness or VOLE values into AES round keys.

via ZK.ByteCombine. It also applies SquareAndCombine to obtain their squares in F2λ .
Finally, for each subword it generates two degree-2 VOLE constraint commitments, of the
form

k̂2 · ŵ − k̂ = 0 and k̂ · ŵ2 − ŵ = 0,

where k̂ and ŵ are the combined elements in F2λ . These constraints encode that k̂ is
indeed the Hence, if all such constraints are satisfied, the final commitments are effectively
commitments to zero.

6.7 Deriving Constraints for the Encryption Routine

Here, we first describe the InvNormConstraints procedure and then the main algorithm
ZK.EncCstrnts.

InvNormConstraints (Figure 6.19). This function derives the constraints to check that a
committed element y is the inverse F24-norm of another committed value a ∈ F28 . It
outputs a single degree-3 VOLE commitment ⟨z⟩ that must equal zero if (and only if)
y× a2 × a16 = a. This ensures y is indeed the inverse-norm of a, or equivalently, y = a−17

ZK.EncCstrnts ( Figure 6.20). This procedure generates the constraint vector
{
⟨zk⟩

}Senc−1
k=0

needed by the ZK.OWFProve algorithm to show correctness of the AES (or Rijndael)
encryption. Below is an overview of how it works.

Inputs and Outputs. The algorithm takes as input: commitments ⟨in⟩, ⟨out⟩ to the initial
and final AES/Rijndael state, each in {0, 1}Nst-bits ; a commitment ⟨w⟩ to the extended
witness (length ℓenc bits); commitments ⟨ki⟩ to the round keys, for i = 0, . . . , R. It returns
a list of QuickSilver constraints

{
⟨z0⟩, . . . , ⟨zSenc−1⟩

}
, that must evaluate to zero if the

witness and ciphertext are consistent with a valid encryption.

Overall Structure. First, EncCstrnts calls ZK.AddRoundKey(⟨in⟩, ⟨k0⟩), preparing the initial
state for the main AES loop. Then it iterates over r = 0, 1, . . . , R/2 − 1. Each iteration
handles two consecutive rounds (2r) and (2r + 1), as follows:

1. Conjugates of the Current State. The algorithm computes bitwise commitments to the
state and then calls F256/F2.Conjugates to obtain each byte’s Frobenius conjugates in
F28 . Let ⟨stateconj,i,j⟩λ be the commitment to s 2j

i , where si is the i-th byte in the
current state.
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FAEST.KeyExpBkwd(⟨x⟩, ⟨xkey⟩, ; param, paramOWF)

Input: VOLE-committed extended witness bits {⟨x[i]⟩}ℓke−1
i=0 and round keys {⟨xkey[i]⟩}(R+1)·128

i=0 − 1

Output: {⟨y[i]⟩}8Ske−1
i=0 : committed bits of the key schedule F28 inversion outputs

1 : new ⟨y⟩, where y ∈ F8Ske
2 // The output array

2 : new ⟨x̃⟩, where x̃ ∈ F8
2 // Temporary storage

3 : iwd := 0 // Index to read words from xk

4 : rconEvry := 4
⌊

λ
128

⌋
// Period of round constant removal

5 : for j ∈ [0..Ske) do // Iterating S-box-wise

6 : for i ∈ [0..8) do // Removing XOR-ed byte

7 : ⟨x̃[i]⟩ ← ⟨x[8j + i]⟩ + ⟨xkey[iwd + 8(j mod 4) + i]⟩
8 : if j mod rconEvry = 0 then

9 : // Rcon[k][i] is i-th bit of k-th round constant (cf. Table 4.1)

10 : ⟨x̃[i]⟩ ← ⟨x̃[i]⟩ + Rcon[⌊j/rconEvry⌋][i]
11 : ⟨y[8j..8j + 7]⟩ ← InverseAffine(⟨x̃⟩) // Storing the affine layer inverse

12 : if j mod 4 = 3 then // Move iwd every 4 S-boxes

13 : if λ = 192 then iwd := iwd + 192

14 : else iwd := iwd + 128

15 : return ⟨y⟩

Fig. 6.17: Transforming VOLE-committed extended witness for the key schedule into F28 -inverse outputs.

2. Inverse Norm Constraints. From the extended witness ⟨w⟩, the algorithm extracts the
4-bit values (InvNorm-related) corresponding to each byte’s S-box input. It lifts those
bits to F2λ via InvNormToConjugates. Then, for each byte i, it calls InvNormConstraints
(Figure 6.19) on ⟨stateconj,i⟩, ⟨yi⟩ to check that the witness indeed encodes a−17 in F28 .
This yields a degree-3 commitment ⟨z2r,i⟩3λ to zero if (and only if) the InvNorm bits
match the current state. These constraints enforce that the 4-bit values in w describe
each S-box input’s inverse norm in F24 .

3. Forward Computation of Round (2r) → (2r + 1). Using the state conjugates and
the InvNorm conjugates, the algorithm forms commitments to each S-box output at
round (2r + 1). Concretely:

- It constructs the subkey k2r+1 at both degree 1 and degree 2 (SquareAndCombine
per-byte).

- For each b ∈ {0, 1}, it runs both the squared and not-squared version of the S-box
affine operation, ShiftRows, MixColumns, and AddRoundKey. The result is the two
commitments ⟨stb⟩2λ.

4. Backward Reconstruction of Round (2r + 1). After finishing the “forward” steps of
round (2r+1), the algorithm verifies consistency from the “backward” computation. If r
is not the final iteration, the partial state after ShiftRows (round 2r+1) is retrieved from
the extended witness (or out if it is the final round). The code calls InverseShiftRows and
InverseAffine on these bits to reconstruct the S-box outputs. Then it compares them to
the forward state ⟨stb⟩ by creating degree-3 constraints that tie each “inverse-output”
to the “forward-output.” Specifically, for each byte, it calls SquareAndCombine to form
ŝ and ŝ 2 and generates ⟨z(3r+1)Nst-bytes+2i⟩3λ and ⟨z(3r+1)Nst-bytes+2i+1⟩3λ, which must be
zero if the forward and backward views match.

5. Next Round State. Except for the last iteration, the procedure obtains the intermedi-
ate state bits ⟨s̃⟩ after ShiftRows in round 2r + 1 and applies BitwiseMixColumns and
AddRoundKey with ⟨k2r+2⟩. This produces the committed bits ⟨state-bits⟩ for the
next iteration (2r + 2).

Top of Section 6 50 Table of Contents



FAEST.KeyExpCstrnts(⟨w⟩ ; param, paramOWF)

Input: Commitment to witness w ∈ {0, 1}ℓke

Output: ⟨z⟩2λ: constraint vector z ∈ F2Ske

2λ
, ⟨k⟩: committed round keys k ∈ F(R+1)·128

2

1 : ⟨k⟩ ← KeyExpFwd
(
⟨w⟩; param, paramOWF

)
// Expanded key bits

2 : ⟨w̄⟩ ← KeyExpBkwd
(
⟨w[λ..]⟩, ⟨k⟩; param, paramOWF

)
// Inverse output bits

3 : // In input w[λ..] means: skip the first λ bits

4 : // Setup index for reading every 4 S-boxes:

5 : iwd := 32 · (Nk − 1)

6 : doRotWord := True // Used for AES256 (rotword toggling).

7 : for j ∈ [ 0..Ske/4) do

8 : new ⟨k̂⟩1λ, ⟨k̂sq⟩1λ, ⟨ŵ⟩1λ, ⟨ŵsq⟩1λ, each a commitment to vector in F4
2λ

9 : for r ∈ [ 0..3] do

10 : r′ ← r

11 : if doRotWord then r′ ← (r + 3) mod 4

12 : ⟨k̂[r′]⟩1λ ← ZK.ByteCombine
(
⟨k[ iwd + 8r .. iwd + 8r + 7]⟩11, λ

)
13 : ⟨k̂sq[r

′]⟩1λ ← SquareAndCombine
(
⟨k[ iwd + 8r .. iwd + 8r + 7]⟩11, λ

)
14 : ⟨ŵ[ r]⟩1λ ← ZK.ByteCombine

(
⟨w̄[ 32j + 8r .. 32j + 8r + 7]⟩11, λ

)
15 : ⟨ŵsq[ r]⟩1λ ← SquareAndCombine

(
⟨w̄[ 32j + 8r .. 32j + 8r + 7]⟩11, λ

)
16 : if (λ = 256) then doRotWord← ¬doRotWord
17 : for r ∈ [ 0..3] do

18 : // z’s are always commitments to zero, so signer need not compute degree-2 coefficients

19 : ⟨z8j+2r⟩2λ ← ⟨k̂sq[r]⟩1λ · ⟨ŵ[r]⟩1λ − ⟨k̂[r]⟩1λ
20 : ⟨z8j+2r+1⟩2λ ← ⟨k̂[r]⟩1λ · ⟨ŵsq[r]⟩1λ − ⟨ŵ[r]⟩1λ
21 : if (λ = 192) then iwd ← iwd + 192 else iwd ← iwd + 128

22 : return (⟨z0⟩2λ, . . . , ⟨z2Ske−1⟩2λ, ⟨k⟩)

Fig. 6.18: Deriving the 2Ske constraints for the AESλ key expansion routine.

InvNormConstraints(⟨aconj,0⟩λ, . . . , ⟨aconj,7⟩λ, ⟨y⟩λ)

Input: Commitments such that aconj,i = a2j

conj,0 for j ∈ [1..7]

Output: ⟨z⟩3λ, commitment to zero

1 : // Verify that y × a2 × a16 = a

2 : // These are commitments to zero and thus have degree 2

3 : ⟨z⟩3λ :=
(
⟨y⟩λ · ⟨aconj,1⟩λ · ⟨aconj,4⟩λ

)
− ⟨aconj,0⟩λ

4 : return ⟨z⟩3λ

Fig. 6.19: Constraint to check that if a ̸= 0 then c is the inverse of the F24 norm of a (that is, c = a−17

in F28).

6.8 Complete OWF Constraints

This section describes the remaining steps needed to prove with QuickSilver ZK proof
system that pk = (x,y) is the image of the secret key w under the AES/Rjiandael-based
one-way function. We have four algorithms:

1. The first one in Figure 6.21 presents some auxiliary operations used for constraints

2. The main OWFConstraints algorithm that combines both key-schedule and encryption
constraints

3. The signer-side procedure OWFProve
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ZK.EncCstrnts(⟨in⟩, ⟨out⟩, ⟨w⟩, ⟨k0⟩, . . . , ⟨kR⟩; param, paramOWF)

Input: Commitments to in ∈ {0, 1}Nst-bits ,out ∈ {0, 1}Nst-bits , w ∈ Fℓenc
2 and round keys ki ∈ FNst-bits

2

Output: ⟨z0⟩, . . . , ⟨zSenc−1⟩
1 : ⟨state-bits⟩ ← ZK.AddRoundKey(⟨in⟩, ⟨k0⟩) // Input and output in bits

2 : for r ∈ [0..R/2) do

3 : // stateconj,i,j = s2
j

i ∈ F28 , where si is i-th byte of state, for j ∈ [0..7]

4 : ⟨stateconj⟩λ := F256/F2.Conjugates(⟨state-bits⟩) // Input in bits, output in bytes

5 : // Extract committed InvNorm’s from the witness

6 : ⟨n⟩ := (⟨w[ 3
2
Nst-bits · r]⟩, . . . , ⟨w[ 3

2
Nst-bits · r + Nst-bits

2
− 1]⟩)

7 : for i ∈ [0..Nst-bytes) do

8 : // Compute the conjugates yj = n2j

i , for j ∈ [0..3]

9 : (⟨y0⟩λ, . . . , ⟨y3⟩λ) := InvNormToConjugates(⟨n[4i..4i+ 3]⟩)
10 : // Run InvNormConstraints(sti, ni), using conjugates of sti

11 : ⟨z3rNst-bytes+i⟩3λ := InvNormConstraints(⟨stateconj,i⟩λ, ⟨y0⟩λ) // degree-3 commitments

12 : for j ∈ [0, 7] do

13 : // For state byte s, obtain conjugate s−2j by multiplying s16·2
j
with inv-norm conjugate, s−17·2j

14 : ⟨(st′i,j)⟩2λ := ⟨stateconj,i,j+4 mod 8⟩λ · ⟨yj mod 4⟩λ
15 : // Compute linear part of the round key and its square, in F28

16 : ⟨k0⟩1λ := StateToBytes(⟨k2r+1⟩) // subkey for round 2r + 1

17 : ⟨k1⟩2λ := (⟨k0
0⟩λ · ⟨k0

0⟩λ, . . . , ⟨k0
Nst-bytes

⟩λ · ⟨k0
Nst-bytes

⟩λ) // bytewise square of subkey

18 : for b ∈ {0, 1} do

19 : ⟨stb⟩2λ := ZK.SBoxAffine((⟨st′0,0⟩2λ, . . . , ⟨st′0,7⟩2λ), . . . , (⟨st′Nst-bytes−1,0⟩2λ, . . . , ⟨st′Nst-bytes−1,7⟩2λ); sq = b)

20 : ⟨stb⟩2λ := ZK.ShiftRows(⟨stb⟩2λ)
21 : ⟨stb⟩2λ := ZK.MixColumns(⟨stb⟩2λ, sq = b)

22 : ⟨stb⟩2λ := ZK.AddRoundKeyBytes(⟨stb⟩2λ, ⟨kb⟩) // round 2r + 1 S-box inputs

23 : // Now go backwards to get S-box outputs for round 2r + 1

24 : if r = R
2
− 1 then

25 : ⟨s̃⟩ := ZK.AddRoundKey(⟨out⟩, ⟨kR⟩)
26 : else

27 : // Extract the bits corresponding to ShiftRows output from the extended witness

28 : ⟨s̃⟩ := ⟨w[ 1
2
Nst-bits +

3
2
Nst-bits · r]⟩, . . . , ⟨w[ 3

2
Nst-bits · r + 3

2
Nst-bits − 1]⟩

29 : ⟨s′′⟩ := InverseShiftRows(s̃) (computed bit-wise)

30 : ⟨s⟩ := InverseAffine(⟨s′′⟩) (bit-wise)
31 : for i ∈ [0..Nst-bytes) do

32 : ⟨s⟩1λ := ZK.ByteCombine(⟨s[8i]⟩, . . . , ⟨s[8i+ 7]⟩) // i-th output of S-box inverse

33 : ⟨ssq⟩1λ := SquareAndCombine(⟨s[8i]⟩, . . . , ⟨s[8i+ 7]⟩)
34 :

35 : // Parse stb = (stb,0, . . . , stb,Nst-bytes−1)

36 : ⟨z(3r+1)Nst-bytes+2i⟩3λ := ⟨ssq⟩1λ · ⟨st0,i⟩2λ − ⟨s⟩1λ
37 : ⟨z(3r+1)Nst-bytes+2i+1⟩3λ := ⟨s⟩1λ · ⟨st1,i⟩2λ − ⟨st0,i⟩2λ
38 : // Go forwards to compute the next round’s state

39 : if r ̸= R
2
− 1 then

40 : ⟨state-bits⟩ := ZK.BitwiseMixColumns(⟨s̃⟩)
41 : ⟨state-bits⟩ := ZK.AddRoundKey(⟨state-bits⟩, ⟨k2r+2⟩)
42 : return (⟨z0⟩, . . . , ⟨zSenc − 1⟩)

Fig. 6.20: Deriving the constraints for the encryption routine
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Signer.ConstantToVOLE(x ∈ Fn
2 )

1 : return ⟨x⟩12 := (0,x) ∈ Fn
2λ × Fn

2

Signer.Deg2To3(⟨z⟩2e)

1 : // parse ⟨z⟩2e as poly z0 + z1x+ zx2,

2 : // where z = 0 ∈ Fn
2e and z0,z1 ∈ Fn

2λ

3 : return ⟨z⟩3e := (0,z0,z1,0) ∈ (Fn
2λ)

4

Verifier.ConstantToVOLE(x ∈ Fn
2 )

1 : // verifier holds ∆ ∈ F2λ

2 : return ⟨x⟩12 := x ·∆ ∈ Fn
2λ

Verifier.Deg2To3(⟨z⟩2e)

1 : // Parse ⟨z⟩2e as γx ∈ Fn
2λ

2 : return ⟨z⟩3e := γx ·∆ ∈ Fn
2λ

Fig. 6.21: Auxiliary operations used for constraints

4. The verifier-side procedure OWFVerify.

Auxiliary operations. In Figure 6.21, we have procedures ConstantToVOLE and Deg2To3.
These are given in two versions, one for the signer and one for the verifier.

- Signer.ConstantToVOLE(x ∈ Fn
2 ): Produces a degree-1 commitment ⟨x⟩12 in Fn

2λ
× Fn

2 ,
effectively storing the bit-string x in the second component.

- Conversely, Verifier.ConstantToVOLE(x) multiplies x by the global difference ∆ ∈ F2λ

and so obtains an F2λ-commitment from the verifier’s standpoint.
- Deg2To3 extends a degree-2 commitment (resp. from the signer or verifier) to a degree-3
commitment, placing zeros in the unneeded coefficients. This is used when a procedure
generates a deg ≤ 2 polynomial in F2λ [x] and we wish to embed it consistently in
a deg ≤ 3 polynomial for the QuickSilver proof. The signer and verifier each have a
slightly different way of “shifting” such polynomials.

ZK.OWFConstraints(⟨w⟩, pk) (Figure 6.22). This is the main algorithm that combines all
sub-constraints, from key-schedule and encryption. Concretely:

1. It parses pk = (x,y) and allocates a new ⟨z⟩3λ for the accumulated constraints.
2. It first appends a small keyspace-reduction constraint ⟨w[0]⟩ × ⟨w[1]⟩ using Deg2To3).
3. If EM = true, it interprets x as an AES/Rijandael key, runs KeyExpansion, and

then sets ⟨k⟩,⟨in⟩, ⟨out0⟩ accordingly. Otherwise, it calls ConstantToVOLE(x) to get a
bitwise-committed input block ⟨in⟩ and similarly for y[0..127]. For the key schedule, it
calls KeyExpCstrnts

(
⟨w⟩

)
, obtaining both round-key commitments ⟨k⟩ and a degree-2

constraint vector ⟨z̃⟩2λ. This is appended to the main buffer by calling Deg2To3.
4. For each encryption block b ∈ {0, 1} (depending on β), it extracts the portion of ⟨w⟩

dedicated to that block’s encryption bits, possibly flips the first plaintext bit if b = 1
(xor with 1), and calls EncCstrnts(⟨in⟩, ⟨outb⟩, . . . ) to produce the final encryption
constraints. These are all collected and appended into the same ⟨z⟩3λ.

5. Finally, the algorithm returns ⟨z⟩3λ.

ZK.OWFProve, ZK.OWFVerify (Figure 6.23). The first procedure, ZK.OWFProve, described
the signer’s algorithm:

1. It converts each bit w[i] into a VOLE-based commitment ⟨w[i]⟩, using V for the tags;
it parses u mask elements {u∗j} and {v∗j }.

2. The, it invokes OWFConstraints(⟨w⟩, pk), which returns a polynomial ⟨z⟩3λ of degree ≤
3. This is parsed as three FC

2λ
vectors a0,a1,a2.

3. Finally, it generates the QuickSilver response ã0, ã1, ã2 by hashing aj∥(masks) with
chall2. The values ã0, ã1, ã2 are then returned as the final proof message.
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ZK.OWFConstraints(⟨w⟩, pk; param, paramOWF)

Input: Committed witness w ∈ Fℓ
2

Output: Committed constraints ⟨z⟩3λ, for z ∈ FC
2λ (will check that z = 0)

1 : Parse pk = (x,y) ∈ {0, 1}Nst-bits × {0, 1}Nst-bitsβ

2 : // Allocate space for constraint commitments

3 : new ⟨z⟩3λ, z ∈ F≤C

2λ

4 : // constraint to reduce keyspace by 1 bit

5 : ⟨z⟩3λ := ⟨z⟩3λ ∥ Deg2To3(⟨w[0]⟩ · ⟨w[1]⟩)
6 : // Define committed in,out for EM compatibility

7 : if EM = true then

8 : (k0, . . . ,kR)← KeyExpansion(x; paramOWF) // 32Nst-bit round key ki

9 : (⟨k0⟩, . . . , ⟨kR⟩)← ConstantToVOLE(k0, . . . ,kR)

10 : ⟨in⟩ ← ⟨w[0..λ)⟩ // Rijndael message block from secret key

11 : ⟨out0⟩ ← ⟨w[0..λ)⟩ + y // Rijndael output block from public key

12 : else

13 : ⟨in⟩ := ConstantToVOLE(x) // convert each bit separately

14 : ⟨out0⟩ ← ConstantToVOLE(y[0..127])

15 : if β = 2 then ⟨out1⟩ := ConstantToVOLE(y[128..255])

16 : (⟨z̃⟩2λ, ⟨k⟩12) := AES.KeyExpCstrnts(⟨w[0]⟩, . . . , ⟨w[0..ℓke)⟩; param, paramOWF)

17 : ⟨z⟩3λ := ⟨z⟩3λ ∥ Deg2To3(⟨z̃⟩2λ) // Saving constraints

18 : for b ∈ [0, β) do

19 : ⟨w̃⟩ := ⟨w[ℓke + bℓenc..ℓke + (b+ 1)ℓenc − 1]⟩ // Selecting encryption bits

20 : if b = 1 then ⟨in[0]⟩ ← ⟨in[0]⟩ + 1

21 : ⟨z̃⟩3λ := AES.EncCstrnts(⟨in⟩, ⟨outb⟩, ⟨w̃⟩, ⟨k0⟩, . . . , ⟨kR⟩; param, paramOWF)

22 : ⟨z⟩3λ := ⟨z⟩3λ ∥ ⟨z̃⟩3λ // Appending values

23 : return ⟨z⟩3λ

Fig. 6.22: Proof of one-way function constraints

The algorithm OWFVerify is the corresponding verifier procedure. It reconstructs the
commitments values ⟨w[i]⟩ from d[i] and Q. It recomputes the constraints ⟨z⟩3λ using the
function OWFConstraints(⟨w⟩, pk), and checks consistency of the hashes with the prover’s
ã1, ã2. In particular, it computes q̃ = ZKHash(chall2, b∥q∗), then returns q̃ − ã1∆− ã2∆

2.
If the proof is correct, this final expression should be the same as ã0.
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ZK.OWFProve(w,u,V, pk, chall2; param, paramOWF)

Input: w ∈ {0, 1}ℓ,u ∈ {0, 1}2λ,V ∈ {0, 1}(ℓ+2λ)×λ ...

Output: ã0, ã1, ã2 ∈ F3
2λ

1 : for i ∈ [0..ℓ) do

2 : Let ⟨w[i]⟩ := (w[i],ToField(V|i;λ))
3 : // embed VOLE masks

4 : for i ∈ [0..2λ) do

5 : v[i] := ToField(V|ℓ+i;λ)

6 : for j ∈ [0..1] do

7 : u∗
j := ToField(u[jλ..(j + 1)λ);λ)

8 : // αλ ∈ F2λ , basis element over F2

9 : v∗j :=
∑

i∈[0..λ) v[i+ λj]αi
λ

10 : // Compute the constraints

11 : // (poly a0 + a1x+ a2x2 + zx3; z = 0)

12 : ⟨z⟩3λ ← OWFConstraints(⟨w⟩, pk)
13 : Parse ⟨z⟩3λ as (a0,a1,a2) ∈ (FC

2λ)
3

14 : ã0 := ZKHash(chall2, (a0∥u∗
0))

15 : ã1 := ZKHash(chall2, (a1∥v∗0 + u∗
1))

16 : ã2 := ZKHash(chall2, (a2∥v∗1))
17 : return (ã0, ã1, ã2)

ZK.OWFVerify(d,Q, pk, chall2, chall3, ã1, ã2; param, paramOWF)

Input: d ∈ {0, 1}ℓ,Q ∈ {0, 1}(ℓ+2λ)×λ ...

Output: ã0 ∈ F2λ

1 : ∆ := ToField(chall3;λ)

2 : for i ∈ [0..ℓ) do

3 : Let ⟨w[i]⟩ := ToField(Q|i;λ) + d[i] ·∆
4 : // embed VOLE masks

5 : for i ∈ [0..2λ) do

6 : q[i] := ToField(Q|ℓ+i;λ)

7 : for j ∈ [0..1] do

8 : // αλ ∈ F2λ , basis element over F2

9 : q∗j :=
∑

i∈[0..λ) q[i+ λj]αi
λ

10 : q∗ := q∗0 +∆ · q∗1
11 : // Compute the constraints

12 : ⟨z⟩3λ ← OWFConstraints(⟨w⟩, pk)
13 : Parse ⟨z⟩3λ as b ∈ FC

2λ

14 : q̃ := ZKHash(chall2, (b∥q∗))
15 : // Reproduce prover’s ã0

16 : return q̃ − ã1 ·∆− ã2 ·∆2

Fig. 6.23: Signer and verifier algorithms for the ZK proof of the one-way function.

7 The FAEST Signature Scheme

In this section we present the principal algorithms of the FAEST signature scheme:

– Section 7.1: Key Generation algorithm FAEST.KeyGen in Figure 7.1
– Section 7.2: Signing algorithm FAEST.Sign in Figure 7.2
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FAEST.KeyGen(param, paramOWF)

1 : do

2 : k← {0, 1}λ

3 : while k[0] ∧ k[1] ̸= 0

4 : x← {0, 1}Nst-bits

5 : y := Fk(x)

6 : sk := k

7 : pk := (x,y)

8 : return (sk, pk)

Fig. 7.1: FAEST key generation algorithm

– Section 7.3: Verification algorithm FAEST.Verify in Figure 7.3.

7.1 Key Generation

The key generation algorithm takes as input one of the parameter sets described in Ta-
ble 3.2 via param, paramOWF, which fixes the security parameter λ, the output length 128·β
to 128 (i.e., β = 1) if λ = 128 and to 256 if λ ∈ {192, 256}, and the OWF. The algorithm,
given in Figure 7.1, is almost the same for all parameter sets.

The algorithm samples a candidate k ∈ {0, 1}λ until the two least significant bits of k
(denoted k[0] and k[1]) are both 1. This is a technical artifact used in the security proof,
in particular this implies there exist some public keys pk for which no valid k can produce
them. Once a valid k is found, the algorithm generates a uniformly random x ∈ {0, 1}Nst-bits ,
then encrypts x under k to obtain y = Fk(x). The secret key is sk = k, and the public
key is pk = (x,y).

7.2 Signing

The algorithm uses some procedures defined in previous sections. In particular, hash func-
tions Hi, as described in Section 3.3. The challenges challj , j ∈ {1, 2, 3}, are obtained using

random oracle Hj
2. The signing algorithm runs in 4 phases, defined by the generation of

the challenges.

In phase 1, the signing procedure (Figure 7.2) starts by initializing an integer counter
ctr to zero. It will be used later for the so-called “grind check.” Then, it samples ρ ∈ {0, 1}λ
as signature randomness; in fully deterministic signing scenarios, ρ may simply be set to
0λ. Next, it uses H0

2 to hash together the public key pk and the message msg, producing
µ ∈ {0, 1}2λ. The signer then combines its secret key sk, the digest µ, and the randomness
ρ as input to H3. This call yields a λ-bit PRG seed r and a temporary 128-bit string
ivpre. Another hash, H4(iv

pre), is then invoked to produce iv, a 128-bit IV which seeds the
AES-based PRG. Using (r, iv) as input, the signer commits to all VOLE instances via a
single call to FAEST.VOLECommit. This call encapsulates all the small-VOLE vectors into
one large GGM-based batch vector commitment: it returns (1) a commitment com, (2) a
decommitment decom sufficient to later open most seeds while hiding one per vector, (3)
a set of correction vectors c1, . . . , cτ−1 that align each VOLE instance to the same secret,
and (4) the secret u plus MAC tags V. Finally, the signer derives a first challenge chall1
from µ, com, {ci}, iv, by calling H1

2 and requesting 5λ+ 64 output bits.

In phase 2, the signer prepares Ṽ and ũ for the VOLE consistency check using
VOLEHash with input V, chall1 and u, chall1, respectively. Next, it generates the extended
witness by calling AES.ExtendWitness on sk and in, producing w. To commit to w, the
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FAEST.Sign(msg, sk, pk; param, paramOWF, paramVOLE)

1 : ctr← 0 // 32-bit int

2 : ρ← {0, 1}λ // Signature randomness — for deterministic signing, set ρ := 0λ

3 : µ := H0
2(pk∥msg; 2λ)

4 : (r, ivpre) := H3(sk∥µ∥ρ) // r ∈ {0, 1}λ, ivpre ∈ {0, 1}128

5 : iv := H4(iv
pre)

6 : // Commitment and VOLE Derandomization

7 : (com, decom, c1, . . . , cτ−1,u,V) := FAEST.VOLECommit(r, iv, ℓ+ 2λ+B; param, paramVOLE)

8 : chall1 := H1
2(µ∥com∥c1∥ . . . ∥cτ−1∥ivpre; 5λ+ 64)

9 : // VOLE consistency check and witness commitment

10 : ũ := VOLEHash(chall1,u) ∈ {0, 1}λ+B

11 : Ṽ := VOLEHash(chall1,V) ∈ {0, 1}(λ+B)×λ // hash column-wise

12 : w := AES.ExtendWitness(sk, in; param, paramOWF) ∈ {0, 1}
ℓ // Extend witness with S-Box outputs

13 : d := w ⊕ u[0..ℓ) // Mask extended witness

14 : chall2 := H2
2(chall1∥ũ∥Ṽ∥d; 3λ+ 64)

15 : // AES proof

16 : u := u[ℓ..ℓ+2λ)

17 : V := V[0..ℓ+2λ) // drop last λ+B rows (impl. may transpose to row-major order here)

18 : (ã0, ã1, ã2) := ZK.OWFProve(w,u,V, pk, chall2; param, paramOWF)

19 : do

20 : chall3 ← H3
2(chall2∥ã0∥ã1∥ã2∥ctr;λ)

21 : if chall3[λ− wgrind : λ) ̸= 0wgrind then

22 : ctr← ctr + 1

23 : continue

24 : I ← DecodeAllChall3(chall3[0 : λ− wgrind))

25 : decomI ← BAVC.Open(decom, I)

26 : while decomI ̸= ⊥
27 : // Build VOLE challenge and open Vector Commitments

28 : return σ := ((ci)i∈[1..τ), ũ,d, ã1, ã2, decomI , chall3, iv
pre, ctr)

Fig. 7.2: FAEST signing algorithm. For EM variant, replace AES.ExtendWitness and AES.AESProve by
Rijndael-EM.ExtendWitness and Rijndael-EM.EMProve

algorithm computes d := w⊕ u[0..ℓ), one-time padding w with u. The signer then derives

a second challenge chall2 by hashing together chall1, ũ, Ṽ, and d.

In phase 3, the signer generates the QuickSilver proof. First, it restricts u and V to
the ℓ+ 2λ rows that are actually needed for the check, then it calls

(ã0, ã1, ã2)← ZK.OWFProve(w,u,V, pk, chall2; param, paramOWF),

which generates the three VOLE tags ã0, ã1, ã2.
Using these proof components, the signer creates the final Fiat–Shamir challenge chall3.
It repeatedly calls

chall3 = H3
2

(
chall2∥ã0∥ã1∥ã2∥ctr;λ

)
,

checking if the last wgrind bits of chall3 are zero. If they are not, it increments the counter
ctr and tries again. Once it has found a chall3 whose last wgrind bits are 0wgrind , the signer
decodes chall3[0 : λ − wgrind] into an index vector I. That vector specifies which leaf is
kept hidden in each VOLE vector. Using its bulk decommitment decom, the signer calls
decomI ← BAVC.Open(decom, I) to open all but one leaf in each of the τ vectors. If
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FAEST.Verify(msg, pk, σ; param, paramOWF)

1 : Parse σ = ((ci)i∈[1..τ), ũ,d, ã1, ã2, decomI , chall3, iv
pre, ctr)

2 : µ← H0
2(pk∥msg)

3 : iv← H4(iv
pre)

4 : if chall3[λ− wgrind : λ) ̸= 0wgrind then

5 : return false

6 : // Reconstruct VOLEs and check commitment

7 : (com,Q)← FAEST.VOLEReconstruct(decomI , chall3[0 : λ− wgrind), c1, . . . , cτ−1, iv; param, paramVOLE)

8 : if VOLEReconstruct returned ⊥ then

9 : return false

10 : chall1 ← H1
2(µ∥com∥c1∥ . . . ∥cτ−1∥ivpre; 5λ+ 64)

11 : // Apply the VOLE correction values and check consistency

12 : Q̃← VOLEHash(chall1,Q) ∈ {0, 1}(λ+B)×λ

13 : Parse chall3 = (δ0, . . . , δλ−1) ∈ {0, 1}λ

14 : D := Q̃⊕ [δ0 · ũ · · · δλ−1 · ũ]
15 : chall2 ← H2

2(chall1∥ũ∥D∥d; 3λ+ 64) // Hash D in column-major order

16 : // Compute AES consistency values

17 : ã0 ← ZK.OWFVerify(d,Q|[0..ℓ+2λ), chall2, chall3, ã1, ã2, pk; param, paramOWF)

18 : Compute chall′3 ← H3
2(chall2∥ã0∥ã1∥ã2∥ctr;λ)

19 : return true if chall3 = chall′3 else false

Fig. 7.3: FAEST verification algorithm. For EM variant, replace AES.AESVerify by Rijndael-EM.EMVerify

this opening algorithm returns ⊥ (indicating the partial opening would exceed the Topen

bound in Figure 5.4), the signer increments ctr and checks again the challenge grinding.
Otherwise, it finalizes decomI .

Finally, in phase 4, it generates the signature σ which consists of:

– The τ − 1 correction vectors {ci}τ−1i=1 ;
– The hashed VOLE secret ũ;
– The commitment to the extended witness d;
– The QuickSilver proof parts ã1, ã2;
– The partial decommitment decomI ;
– The last challenge chall3;
– The 128-bit string ivpre;
– The final counter ctr.

7.3 Verification

The verification algorithm FAEST.Verify is shown in Figure 7.3. The verifier begins by
parsing the signature σ into its components: the correction vectors {ci}, the hashed VOLE
secret ũ, the witness commitment d, the QuickSilver proof pieces ã1, ã2, the partial opening
decomI , the final challenge chall3, the bit-string ivpre, and the grind counter ctr. It then
re-computes µ := H0

2(pk∥msg) and obtains iv = H4(iv
pre). If chall3’s last wgrind bits are not

zero, the verifier aborts immediately, as it implies the signer did not correctly perform the
grinding step.

Otherwise, the verifier calls

(com,Q)← FAEST.VOLEReconstruct
(
decomI , chall3[0 : λ− wgrind], c1, . . . , cτ−1, iv; param, paramOWF

)
,

which reconstructs all leaves except those indicated by the index vector embedded in
chall3. This procedure will internally re-expand the GGM tree from the partial seeds,
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check that each VOLE instance is consistent with its correction vector ci, and finally
produce the VOLE commitment com along with a re-constructed matrix Q of VOLE tags.
If VOLEReconstruct fails or returns ⊥, the verifier rejects. Otherwise, it re-computes the
first challenge chall1 := H1

2(µ∥com∥c1∥ . . . ∥cτ−1∥iv; 5λ+ 64).

Next, the verifier hashes Q to Q̃ via VOLEHash with input chall1. It then interprets
the bits of chall3 (beyond the final wgrind) as δ0, . . . , δλ−1 and calculate D := Q̃ ⊕ [δ0 ·
ũ · · · δλ−1 · ũ]. This permits to reconstructs

chall2 := H2
2(chall1∥ũ∥D∥d; 3λ+ 64).

In the final step, the verifier checks the QuickSilver proof. It derives

ã0 ← ZK.OWFVerify
(
d,Q|[0..ℓ+2λ), chall2, chall3, ã1, ã2, pk

)
,

recovering the missing piece ã0. With all three proof elements, the verifier is able to
compute chall′3 ← H3

2(chall2∥ã0∥ã1∥ã2∥ctr;λ). If chall′3 does not match the provided chall3,
the verifier rejects; otherwise, it accepts.

8 Performance Analysis

We provide two implementations of FAEST as part of the proposal. The first is a reference
implementation in standard C, while the second is an architecture-specific C++ imple-
mentation with optimizations aimed at x86-64 architectures with the AVX2 and AES-NI
instruction set extensions, as commonly seen in Intel and AMD CPUs. Note that the “op-
timized implementation” required by NIST is identical to the reference implementation.
Both implementations were built using the eXtended Keccak Code Package (XKCP) and
OpenSSL libraries.

We used a few techniques worth mentioning in the x86-64 implementation. To hash
efficiently, especially for grinding, we used a feature of XKCP to run four Keccak permuta-
tions in parallel, with instruction level parallelism. For converting V and Q from column
to row major order, we used an extension of Eklundh’s matrix transposition algorithm
[TE76]. Our use of AES as a PRG is limited by only generating a few blocks of output
for each key, and most implementations of the AES key schedule are relatively inefficient
in this setting. To improve the performance of our PRGs, we adapted the approach of
Gueron et al. [GLNP15] to run four AES key schedules in parallel with vectorization. Fi-
nally, for ConvertToVOLE we adapted an efficient algorithm for parity checking Hamming
codes [LLH20].16

Benchmarking Setup. We measured the performance of both implementations using a
single core of a workstation running a AMD Zen 3 Ryzen 9 5950X processor at 3.4GHz
(with clock boosting disabled) and 128GiB memory. The system was otherwise idle (load
average 0.01), so while Simultaneous Multi-Threading was enabled it likely did not affect
the results significantly. Each individual test can be run with memory usage below 19MiB.
The computer was running Linux 6.6.40, and the implementations were built with GCC
14.1.1.

Performance. Table 8.1 shows the performance of the AVX2 implementation. Runtimes of
the respective algorithms are given in milliseconds and CPU cycles. Times for the AVX2
implementation were averaged over 10000 runs, while times for the reference implementa-
tion were averaged over 100 runs.

16The paper presents the algorithm as an encoding algorithm for Hadamard codes, the dual of Hamming
codes. The transpose of this algorithm calculates the parity for a Hamming code.
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Scheme
Runtimes in ms, Mcyc. Sizes in B

KeyGen Sign Verify sk pk Signature

FAEST-128s 0.002 0.005 3.761 12.787 2.877 9.783 32 32 4 506

FAEST-128f 0.002 0.005 0.507 1.722 0.415 1.413 32 32 5 924

FAEST-192s 0.003 0.011 16.084 54.687 12.438 42.290 40 48 11 260

FAEST-192f 0.003 0.011 2.072 7.045 1.788 6.079 40 48 14 948

FAEST-256s 0.004 0.013 22.450 76.330 21.925 74.546 48 48 20 696

FAEST-256f 0.004 0.013 3.256 11.071 3.012 10.241 48 48 26 548

FAEST-EM-128s 0.002 0.005 2.766 9.403 2.176 7.398 32 32 3 906

FAEST-EM-128f 0.002 0.005 0.413 1.404 0.327 1.113 32 32 5 060

FAEST-EM-192s 0.003 0.009 11.553 39.282 10.659 36.239 48 48 9 340

FAEST-EM-192f 0.003 0.009 1.523 5.177 1.372 4.665 48 48 12 380

FAEST-EM-256s 0.004 0.013 18.372 62.465 17.570 59.738 64 64 17 984

FAEST-EM-256f 0.004 0.013 2.775 9.436 2.566 8.725 64 64 23 476

Table 8.1: Benchmark results for the architecture specific implementation for x86-64 with AVX2.

Scheme
Runtimes in ms, Mcyc. Sizes in B

KeyGen Sign Verify sk pk Signature

FAEST-128s 0.001 0.005 98.843 336.067 93.749 318.747 32 32 4 506

FAEST-128f 0.001 0.005 23.873 81.169 20.433 69.474 32 32 5 924

FAEST-192s 0.002 0.005 362.406 1 232.180 324.491 1 103.269 40 48 11 260

FAEST-192f 0.002 0.005 107.859 366.721 85.746 291.537 40 48 14 948

FAEST-256s 0.002 0.005 771.523 2 623.178 742.455 2 524.347 48 48 20 696

FAEST-256f 0.002 0.005 175.249 595.847 147.233 500.592 48 48 26 548

FAEST-EM-128s 0.002 0.005 42.411 144.196 37.473 127.409 32 32 3 906

FAEST-EM-128f 0.002 0.005 15.233 51.794 11.865 40.342 32 32 5 060

FAEST-EM-192s 0.028 0.096 135.106 459.360 117.702 400.187 48 48 9 340

FAEST-EM-192f 0.028 0.096 61.360 208.624 45.368 154.252 48 48 12 380

FAEST-EM-256s 0.046 0.158 217.212 738.521 187.992 639.173 64 64 17 984

FAEST-EM-256f 0.046 0.158 105.891 360.029 78.538 267.029 64 64 23 476

Table 8.2: Benchmark results for the reference implementation.



9 Security Evaluation

In this section, we evaluate the security of FAEST. We start by describing the best known
concrete attacks against the scheme, and then present formal security analysis in both the
random oracle and quantum random oracle models.

9.1 Security Against Known Attacks

We now analyze the security of FAEST with respect to known attacks.
The cryptographic primitives used in FAEST are the one-way functions (OWF) based

on AES or EM-AES, as well as the AES-CTR PRG and the SHA3 hash functions SHAKE-
128 and SHAKE-256 (Section 3.3). While we, in fact, exploit the PRG security of these
primitives, we will call them one-way functions here to distinguish them from the other
PRGs used, and for consistency with MPC-in-the-head based signature constructions. In
Section 9.2, we give a detailed analysis of the security of the OWF constructions. The other
primitives have all been previously standardized by NIST (SP 800-90A for the AES-CTR
PRG, and FIPS 202 for SHA3), have received a large amount of scrutiny and are used
ubiquitously in applications today. There are no known attacks on the pseudo-randomness
of AES-CTR, nor on the pseudo-randomness or collision-resistance of SHA3, that perform
much better than exhaustive search. In our security proof, we also model the SHA3 hash
functions we use as random oracles. This is a standard practice in security analysis of
cryptography, and it is widely believed that instantiating random oracles using SHA3 —
with appropriate domain separation — does not lead to any security weaknesses in typical
protocols that do not make any non-black-box use of the hash function.

9.1.1 Brute Force the Public Key. The simplest attack strategy is to attempt to
invert the OWF output given in the public key, in order to recover the signing key. This
is essentially a key recovery attack on AES, given one or two ciphertext blocks. A couple
of slight differences must be accounted for, however. Firstly, in our case, since KeyGen
uses rejection sampling to sample a key such that the first two bits are not both 1, the
effective key space is reduced slightly in size. Secondly, since there are only one or two
blocks of AES output in the public key, it is possible that there are collisions, and the
attacker could find a different key k′ that is still a preimage of the OWF. As discussed
in Section 9.2.4, this has only a minimal impact on security, and we estimate the attack
cost for the FAEST and FAEST-EM instances to be between 2λ−2 and 2λ−1 evaluations of
AES-λ. So, our OWFs lose only around 1–2 bits of security, compared with standard AES
encryption.

9.1.2 Brute Force the PRG. Another way to try to recover the signing key is to
attack the pseudo-random generator PRG, used in the BAVC.Commit and ConvertToVOLE
procedures. As described in Section 3.3, PRG is built using AES-CTR at the λ-bit security
level, with a random, per-signature IV and a tweak that varies at different places in the
signature. Suppose an attacker is attempting to recover the secret key, given just one
signature. If the same (iv, twk) pair is used in several PRG calls, an attacker may attempt
to mount a multi-target attack, where a single key guess is tested for correctness with
n possible candidates. If testing correctness with respect to all n candidates is cheaper
than computing n AES-CTR outputs, then this can be cheaper than a naive brute-force
attack. This is a type of time/space tradeoff attack, which has been explored in other
post-quantum signature schemes like Picnic [DN19].

We argue that FAEST is not susceptible to such attacks, because of the way the tweaks
are chosen. First, consider the length-doubling tweakable PRGs (tPRGs) used in the tree-
based vector commitment algorithm, BAVC.Commit. At each level of the tree, a signature
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reveals all-but-one of the keys corresponding to the nodes at that level. Given a candidate
guess g for a missing key, the guess can be verified by expanding g into two new keys
using PRG, and then comparing these keys with the corresponding known left/right keys
in the tree. If there is a match, it’s likely (unless we have found a collision in one half of
the PRG output) that g is the correct missing key and allows recovering the missing leaf,
which then leaks the secret witness. A second place17 PRG is used is in the ConvertToVOLE
algorithm, where each seed sdi is expanded, and then the sum of these outputs forms the
vector u used to mask the witness. Since all-but-one of the seeds are known, this tPRG
may be attacked in a similar way, since given any guess g and the first block of AES-CTR
under key g, one gets a candidate signing key k that can be tested for. As different tweaks
are used for each of the described invocations of PRG, a multi-target attack against them
is not possible. We conclude that the cost of key recovery through these uses of the PRG is
the same as that of attacking a single target of a PRG based on AES-CTR, which requires
e.g. ≈ 2λ AES evaluations in the classical setting to obtain a success probability close to
1.

Given Multiple Signatures. Suppose the attacker is given up to Qsig signatures. Since each
signature uses an independent, random iv ∈ {0, 1}128, we expect all IVs to be unique with
good probability, as long as Qsig < 264. If the IVs are unique then we are not aware of
any attacks that exploit having multiple signatures and perform better than the single
signature attack described above. If there are a small number of collisions, say c, then the
attack’s complexity will be reduced by a factor of c, since there are c times as many PRG
targets with the same IV to attack. However, since collisions are unlikely to happen and
out of the control of the attacker, having a large number of signatures does not seem to
help the attacker here. The iv and twk are separate inputs of PRG, so multi-target attacks
combining different calls and multiple signatures are also prevented.

9.1.3 Attack Soundness of the ZK Protocol. Instead of directly recovering the
signing key, an attacker may attempt to forge a signature by violating the soundness
property of the underlying interactive proof, using an invalid witness with the public
key. Soundness is covered in our EU-KO security proof in Theorem 9.24. This proof is
tight, up to a small constant factor, and we now explain why the individual terms in the
adversary’s advantage do not lead to any effective attacks when our concrete SHA3-based
hash functions are modeled as random oracles.

The first two summands in soundness bound of Theorem 9.24, which grow quadratically
in the random oracle queries, correspond to finding a collision in a random oracle with at
least 2λ output bits, which requires around 2λ queries to succeed. Since we use SHAKE
instead of a random oracle, this is equivalent to a generic collision search on SHAKE. The
third summand is related to the leaf commitments. For FAEST, it is τQ0 · 22λ · εuhash =
τQ0 · 2−λ, which is the probability that a universal hash does not lead to an injective leaf
commitment. For a random oracle, any attack boils down to exhaustive search requiring
2λ/τ ≥ 2λ−5 evaluations. For FAEST-EM, we make a stronger assumption (Definition 9.13),
which cannot be efficiently verified. We discuss its plausibility in Remark 9.14; in short,
we are not aware of a better attack than a collision search. The last summand in the
soundness advantage bound is the round-by-round soundness of the proof system. This
can only be broken by forcing the output of SHAKE to lie within a set of outputs (i.e.
challenges) which is a 3/2λ fraction of all outputs. For a random oracle, any attack boils
down to exhaustive search requiring 2λ/3 ≥ 2λ−2 evaluations. Note that, since SHAKE is
more costly to evaluate than AES, none of these attacks are worthwhile for an attacker

17PRG is also used to derive the randomness ri in VOLECommit, however, this does not seem to permit
a multi-target attack, since there’s no way to verify a guess for ri without performing another PRG call.
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compared with directly inverting the one-way function in the public key to recover the
secret key. (The advantage term related to pseudorandomness of the one-way function
in Theorem 9.24 is due to our proof technique and related to tightly secure signatures
following the approach of Katz and Wang [KW03].)

9.1.4 Multi-User Attacks. We have also taken steps to ensure that FAEST remains
secure in a multi-user setting, where many different signers are using the same signing
algorithms but with independently generated public keys. We first consider the setting
where an attacker has access to a large number of public keys pk1, . . . , pkN , and wishes
to recover a single secret key ski. Since each pki uses an independently sampled x in
KeyGen, which defines the OWF F(·)(x), there is no way to perform a multi-target attack
(as described above in the single user setting) across all N OWF instances. Indeed, any
attempt at exhaustive search must be based on a value x for a specific user, so having
multiple instances does not help carry out the attack. Another countermeasure that helps
prevent this type of attack is the random IVs sampled for each signature, which again
ensure independence of the PRGs used across different signatures and public keys.

Another type of multi-user attack is a key substitution attack [MS04], where the at-
tacker is given a signature σ under some public key pk, and tries to find a signature σ′

that verifies under another public key pk′ for the same message. In FAEST, we avoid this
type of attacking by hashing the public key together with the message to obtain the hash
µ. This uniquely binds the public key to each signature, preventing key substitution.

9.2 Concrete Analysis of AES as a OWF

The security proof for FAEST relies on the PRG security of OWF. The FAEST OWF is
AES counter mode encryption of zero. As such, pseudorandom function security is well-
tested and implies the PRG security we require. For FAEST-EM, the security of the Even
Mansour cipher as a pseudorandom permutation in the ideal permutation model (which
also holds in the quantum-accessible ideal permutation model [ABKM22]) implies the
PRG security we require, in the same idealized model.

In practice, even though our proofs assume pseudorandomness of these functions, we
are not aware of any attack strategy for forging a signature without actually inverting the
functions to recover the secret key. Below, we therefore also include some formal analysis
of the one-wayness of our two one-way function instantiations.

9.2.1 AES with Key Expansion. In [CDG+17], Chase et al. formally show that it
is possible to use a block cipher, with key size equal to the block size and viewed as a
PRF, to instantiate a OWF. Similarly, we show that our F is a OWF based on it being
the concatenation of 1 or more calls to a PRP.

Lemma 9.1. If P : K ×M → M is a PRP, then for all sufficiently high β < |M|/2,
F ((x0, . . . , xβ−1), k) = (P (k, x0), . . . , P (k, xβ−1)) is a OWF. Concretely, any adversary A
against the OWF F can be turned into an adversary A′ against the PRP P , such that

AdvOWFFA ≤

(
1 +Bβ

|K|
|M|β

)
AdvPRPP

A′ +Bβ
|K|

|M|β (|M| − β)β
,

where Bβ is the βth Bell number and (x)y = x(x− 1) · · · (x− y+1) is the falling factorial.
A′ makes at most 2β queries to the PRP oracle, and takes computation similar to A plus
an extra β PRP evaluations.
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Proof. We present a sequence of games, and bound how much the advantage can decrease
from one game to the next. Each game is a randomized algorithm that interacts with
the adversary, then outputs a rational number representing the adversary’s payoff. The
advantage is the expected value of the payoff.18 We will then complete the hybrid proof
by bounding the advantage of the final game.

G0: This is the OWF game: k ← K and xi ← M are all sampled independently, and A
is given xi and yi = P (k, xi) for all i. The game outputs 1 if A returns k′ such that
P (k′, xi) = yi for all i, and 0 otherwise.

G1: Instead of evaluating yi = P (k, xi), sample all yi ← M uniformly, subject to yi =
yj ⇐⇒ xi = xj for all i, j. This change reduces directly to the security of the PRP,
because k is only used for computing the yi.

G2: Reintroduce the variable k, and again sample it uniformly as k ← K. In addition to
checking P (k′, xi) = yi, also require that k′ = k. However, have the game output |K|
instead of 1 when this check succeeds. This change divides the chance of the adversary
succeeding by |K|, but multiplies the payoff on success by the same. Therefore, the
advantage is unchanged.

G3: Refactor the game by checking P (k, xi) = yi instead of P (k′, xi) = yi. If k ̸= k′ then
the game outputs 0 anyway, so this game behaves identically to the previous.

G4: Again refactor, this time by replacing yi with P (k, xi) in A’s input. Again, the game
will output 0 anyway if they are not equal.

G5: Notice that yi is only used in the equality checks P (k, xi) = yi for i ∈ [0, β). Therefore,
these checks all succeeding has probability exactly

1

|M| (|M| − 1) · · · (|M| − β′ + 1)
=

1

(|M|)β′
,

where β′ is the number of distinct xi. Remove these checks and all the yi, and instead
reduce the payoff on success from |K| to |K|

(|M|)β′
. The advantage for this game is identical

to the previous, because the success probability was multiplied by (|M|)β′ , but the
payoff on success was divided by the same.

G6: So far, the xi have all been sampled uniformly. This implies a distribution for the
partition defined by which xi are equal to each other. In particular, there are (|M|)β′

ways to assign β′ distinct values fromM to the xi, so the probability of each partition

with β′ classes (i.e., β′ distinct values of xi) is
(|M|)β′
|M|β

.

Instead, first sample a partition uniformly at random, then sample the xi to be identical
within each class, and distinct between classes. Additionally, change the payoff on

success from |K|
(|M|)β′

to Bβ
|K|
|M|β

, since Bβ is the number of partitions of a set of size β.

This does not change the advantage, because while we have multiplied the chance of

selecting each partition with β′ classes by |M|β
(|M|)β′Bβ

, we divided the success payoff by

the same.

To summarize the current game, we are now almost back at G0. However, there are
two changes: A now has to output the correct key k′ = k to win, not just find another

preimage to P (k′, xi) = yi, and the payoff of winning the game is now Bβ
|K|
|M|β

instead

of 1.

G7: Let u0, . . . , uβ−1 ∈ M be distinct, and distinct from all xi. Instead of checking that
k′ = k, check that P (k′, ui) = P (k, ui) for all i. This can only increase A’s advantage,
because if k′ = k then P (k′, ui) = P (k, ui).

18This is a generalization of the usual notion of cryptographic games, which typically only output in
{0, 1} and define advantage to be the probability of outputting 1.
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G8: Like in G1, replace the evaluations of P (k, xi) with randomly sampled yi ←M, subject
to yi = yj ⇐⇒ xi = xj . Additionally, replace the evaluations of P (k, ui) with vi, which
are sampled as distinct elements of M\ (y0, . . . , yβ−1). This change again reduces to
the security of the PRP. The difference in advantage from the previous hybrid is at

most Bβ
|K|
|M|β

times the advantage of the reduction to PRP security, because the payoff

of winning has been multiplied by Bβ
|K|
|M|β

.

Finally, we bound the advantage of G8. Notice that the adversary can win only when
the freshly random values vi satisfy P (k′, ui) = vi. There are at least (|M|−β)(|M|−β−
1) · · · (|M| − 2β + 1) possibilities for (v0, v1, . . . , vβ−1), so A can succeed with probability

at most 1
(|M|−β)β . The payoff on success is Bβ

|K|
|M|β

, so the advantage of the G8 can be at

most Bβ
|K|

|M|β(|M|−β)β
.

Totalling the advantage across all steps of the proof gives the stated bound. To con-
struct A′, randomly select which of the two reductions to run. I.e., with probability
|M|β

|M|β+Bβ |K|
run the reduction for the change from G0 to G1, and otherwise use the one

for the change from G7 to G8.

To provide some intuition for why the AdvOWF can be greater than the AdvPRP, note
that there are two ways the adversary can win the OWF game. A can either find the
correct key, or find another key consistent with the OWF output. It is only in the former
case that the PRP gets broken.

9.2.2 AES Without Key Expansion. The single-key Even–Mansour scheme is a
way to construct a block cipher F from a cryptographic permutation π [DKS12, EM97].
It works by adding a key k to the input z (in our case set to 0) and to the output of the
permutation, i.e.,

F π
k (z) = k + π(k + z) . (2)

In FAEST we instantiate π with a block cipher such as AES with x as the key, as described
in Section 3.3. As in the previous case, we need it to be a one-way function: given some
(x, y) such that y = F π

k (0), it should be difficult to find a k′ such that F π
k′(0) = y. More

formally, the adversary’s advantage in breaking the OWF is the following probability:

Pr[z ← {0, 1}λ, k ← {0, 1}λ, k′ ← Aπ(z, F π
k (z)) : F

π
k′(0) = F π

k (0)]. (3)

As done in previous work, we consider the single-key variant and model π as an ideal
permutation and consider attackers with oracle access to it. The following proof is adapted
from a proof of Dobrauning et al. [DKR+22]

Theorem 9.2. The single-key Even–Mansour construction (Equation (2)) is a secure
one-way function, when the permutation π is an ideal random permutation.

Proof. The attacker A is initialized with y and has oracle access to π. We must show that
the probability in Equation (3) is negligible in λ (the key size and block size in bits).

Just before producing an output, A has made q queries to π, and has pairs (ki, yi)
where yi = π(ki) for i ∈ [0, q). W.l.o.g., we assume that inputs ki to π are distinct.

Each query is in exactly one of two cases. In the “consistent case”, A learns a consistent
key ki, which means that ki = y − yi. In the “inconsistent case”, A does not learn a
consistent key, but it does learn that both ki and k′i = y − yi cannot be consistent keys.
To see why also k′i cannot be a consistent key in the “inconsistent case”, notice that if it
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were consistent then

y = π(k′i) + k′i

y = π(k′i) + y − yi

π(ki) = π(k′i) ,

which is a contradiction since π is a permutation and ki ̸= k′i.
We need to bound the probability of the “consistent case” occurring. Assume that

all past queries have been in the “inconsistent case”. If π(ki) is queried in the forward
direction, then there are two possibilities: either ki = k, which has probability at most
1/(2λ − 2i) because only thing the adversary knows about k is that 2i possibilities have
been eliminated, or ki ̸= k, in which case yi = π(ki) is uniform from a set of size 2λ− i−1,
and so has probability at most 1/(2λ− i− 1) of outputting yi = y− ki. A similar analysis
holds when π−1(yi) queried, where either yi = y − k, and so the adversary has guessed
k, or otherwise ki = π−1(yi) has probability at most 1/(2λ − i − 1) of equaling y − yi.
Combine these using a union bound to get

1

2λ − 2i
+

1

2λ − i− 1
<

2

2λ − 2i− 1

By possibly adding an extra query, we can makes that A always queries π on its output
k′. The adversary then wins only when it hits the “correct case” defined above, for some
query. Therefore, the adversary wins with probability at most

1−
q∏

i=0

(1− 2/(2λ − 2i− 1)) = 1−
q∏

i=0

(2λ − 2(i+ 1)− 1)/(2λ − 2i− 1)

= 1− (2λ − 2(q + 1)− 1)/(2λ − 1)

= 2(q + 1)/(2λ − 1)

The factor of 2 in the bound may be unexpected. Why can the adversary do better
than guessing the correct key k? To break the OWF, the adversary can either find the
correct key k, or another key k′ that is consistent with y. For a random key guess ki, each
of these has probability roughly 2−λ, so the guess is right with probability roughly 2 · 2−λ.
This is where the factor of 2 comes from.

9.2.3 Post-quantum security of the single-key Even-Mansour OWF. It was
shown in [ABKM22] that the single-key Even-Mansour construction is a post-quantum-
secure block cipher (i.e., a pseudo-random permutation, PRP) when the permutation π
is an ideal random permutation. Here, we quote the result from [ABKM22], and use
Lemma 9.1 to prove a simple corollary showing that single-key Even-Mansour is a post-
quantum-secure one-way function in the same setting. The security bound we prove essen-
tially matches the straight-forward Grover search attack (up to a square root in success
probability).

The theorem from [ABKM22], specialized to single-key Even-Mansour, is

Theorem 9.3 (Special case of Theorem 3 of [ABKM22]). Let A be an adversary
making qF classical queries to its first oracle and q quantum queries to its second oracle.
Let π and σ be uniformly random λ-bit permutations, and k ← {0, 1}λ. Then∣∣∣Pr [AFπ

k ,π(1λ) = 1
]
− Pr

[
Aσ,π(1λ) = 1

]∣∣∣
≤ 10 · 2−λ/2 (qF

√
q + q

√
qF ) ,

where F π
k (z) = k + π(k + z) denotes the single-key Even-Mansour construction using

permutation π and key k, and it is understood that A has forward and inverse access to
its oracles.
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Plug this bound into Lemma 9.1 with m = λ and β = 1.

Corollary 9.4. Let A be an adversary making q quantum queries to its uniformly random
λ-bit permutation π. Each query can be either forward or inverse. Then,

AdvOWFAπ ≤ 20 · 2−(λ−1)/2
(√

2q + 2 + q + 1
)
+

1

2λ − 1
.

This shows that Ω(2λ/2) quantum queries to π are necessary to find an inverse to the
single-key Even-Mansour OWF, matching the mentioned Grover search attack.

9.2.4 Accounting for the Reduced Key Space. One slight difference between our
OWF instantiations and standard uses of AES is that our key space is 3

4 the size of the
standard, λ-bit key space. Recall that this restriction is needed for the security proof. In
FAEST v1, key generation had a stronger restriction on the inputs to each S-box, which
further reduced the key space, and was analyzed to reduce the concrete attack costs by
1–2 bits. In FAEST v2, we only lose 0.5 bits of security: an attacker can easily discard the
1/4 of the key space that does not satisfy the constraint, and the remaining 3/4 of the key
space is uniformly distributed.

9.2.5 Security margin of OWF instantiations. We argued earlier that choosing
an AES-based OWF is conservative. Here, we study the security margin of our two OWF
instantiations in more detail.

When cryptanalysts cannot break a full version of a block cipher such as AES, variants
with a reduced number of rounds are considered. The gap between the number of rounds
that can be attacked and the number of rounds of the full version is considered a security
margin, a buffer that may help to defend against yet unknown attack vectors.

Key recovery attacks on AES. There are no known key-recovery shortcut attacks that
work with a single (plaintext, ciphertext) pair except variants of brute-force key search.
The best known attack on round-reduced variants of AES in this class is from more than
10 years ago, given by Bouillaguet, Derbez and Fouque [BDF11], applied to 4-round AES
and is marginal, costing 2120 time and 280 memory.

Key recovery attacks on EM-AES. There are no known key-recovery shortcut attacks that
work with a single (plaintext, ciphertext) pair except variants of brute-force key search,
also not shortcut attacks on variants with less rounds. In absence of key recovery attacks,
it is instructive to look at cryptanalytic results on AES that allow to distinguish the
fixed-key AES permutation from random. For 5-round AES, a distinguisher [GRR17] that
requires 232 (plaintext, ciphertext) pairs and works for any key is known. Subsequently,
for a setting giving more possibilities to an attacker, (adaptively chosen ciphertexts) this
got improved in [BR19b] and to 6-rounds AES in [BR19a]).

In conclusion, the issue of how the EM and non-EM one-way functions compare for
AES in terms of security margin is an interesting open question. Removing the constraint
imposed by the OWF (only a single input/output pair available to an attacker) gives an
upper bound on the security margin. Using the example of AES-128 with 10 rounds, the
best key recovery attacks are on 7 rounds [DFJ13, BR22] (or 8 rounds if time-complexity
close to brute-force is included [BKR11]), and the best permutation distinguishers reach
up to 6 rounds [GRR17, BR19a].

9.3 Preliminaries for Security Reductions

In this subsection, we gather some notation, definitions and helpful lemmata.
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9.3.1 Notation For a function F : X → Y, we write dom(F ) = X for the domain of F ,
cod(F ) = Y for the codomain of F , and im(F ) = {F (x) | x ∈ X} ⊆ Y for the image of F .

9.3.2 Divergence By construction, AES is a pseudorandom permutation (PRP), yet
we want to treat it as a pseudorandom function (PRF). Naively, switching from a random
permutation to a random function is distinguishable with advantage about Q2/D for
domain size D. Since our domain would be {0, 1}128, i.e., 128bit block (as specified by
AES), we could not prove higher than 128bit security, even when limited to 264 signatures
overall. Fortunately, this is just a proof artefact and easily resolved by using suitable proof
technique, such as the “H-coefficient” method or “Renyi divergence”. Namely, we have the
following facts.

Lemma 9.5 (∞-divergence). Let X and Y be random variables with values in a set

Ω and countable support. Let ρ := supω∈Ω
Pr[X=ω]
Pr[Y=ω] , where 0/0 := 0 and t/0 := ∞ for any

t > 0. For any function f : Ω → R≥0 we have

E[f(X)] ≤ ρ · E[f(Y )]

In particular, for any event E ⊆ Ω, we have

Pr[X ∈ E] ≤ ρ · Pr[Y ∈ E]

Note that D∞(X∥Y ) := log(ρ) is called ∞-divergence or Rényi divergence of order ∞.

Proof. We have by definition of ρ and since f ≥ 0 that

E[f(X)] =
∑
ω∈Ω

Pr[X = ω] · f(ω)

=
∑
ω∈Ω

Pr[X = ω]

Pr[Y = ω]
· Pr[Y = ω] · f(ω)

≤
∑
ω∈Ω

ρ · Pr[Y = ω] · f(ω)

= ρ · E[f(Y )]

which proves the first claim. The second follows since Pr[X ∈ E] = E[f(X)] for the
predicate f(ω) = [ω ∈ E] ∈ {0, 1}.

Corollary 9.6. Let X be a set of size N and let n ∈ N with n < N . Let A : X n → {0, 1}
be any function. Let R be the uniform distribution on X n and let P be the distribution of
n uniform samples without replacement from X . Then we have

Pr[A(P ) = 1] ≤ e
n(n−1)

N Pr[A(R) = 1]

Proof. By Lemma 9.5, it suffices to show Pr[P=x]
Pr[R=x] ≤ e

n(n−1)
N . This follows since Pr[P =

x] ≤ 1
N ·(N−1)·...·(N−n+1) and Pr[R = x] = 1

Nn , and therefore

1/(N · (N − 1) · . . . · (N − n+ 1))

1/Nn
=

Nn

(N · (N − 1) · (N − n+ 1))

=
(n−1∏
i=1

(1− i

N
)
)−1
≤ e

n(n−1)
N

because e−x ≤ 1− x/2 for x ≥ 0.
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In particular, we can use Corollary 9.6 to switch outputs of PRGs in the GGM tree to
truly random outputs. Then, they can serve as random seeds for the next GGM application.

Remark 9.7 (Hybrids with∞-divergence). For a sequence of hybrids H0,H1, . . . ,Hn, where
Pr[Hi−1 = 1] ≤ ρi · Pr[Hi = 1] + εi, with ρi ≥ 1 and εi ≥ 0, we find

Pr[H0 = 1] ≤
( n∏
j=1

ρj
)
· Pr[Hn = 1] +

n∑
i=1

(i−1∏
j=1

ρj

)
· εi

≤
( n∏
j=1

ρj
)
·
(
Pr[Hn = 1] +

n∑
i=1

εi

)
This is the analogue to the usual hybrid argument.

9.3.3 Standard Hardness Assumptions Most of our hardness assumptions are re-
lated to AES, in particular indistinguishability of AES from a pseudorandom permutation.
We do not make explicit that hardness assumptions on the hashes H0, . . . ,H4; these are
idealized as random oracles in the security proofs.

Definition 9.8 (Indistinguishability). Let D0,D1 be two distributions. Let A be an
adversary in the following experiment ExpDistA:

– x0 ← D0, x1 ← D1, b← {0, 1},
– b′ = A(1λ, xb)
– Return b′ = b.

The distinguishing advantage of A is

AdvDistD0,D1

A = 2 ·
∣∣∣∣Pr[ExpDistA]− 1

2

∣∣∣∣ = ∣∣Pr[b′ = 1 | b = 0]− Pr[b′ = 1 | b = 1]
∣∣

If A is given access to Q independent samples of D0 or D1 instead, we write AdvDist
D0,D1

A [Q]
for the advantage in the respective game. The definition for indistinguishability of oracles
(instead of distributions) is analogous.

An efficiently computable function family PRF : Kλ × Xλ → Yλ where Kλ is the key
space is a pseudorandom function (PRF) if for a uniform secret key k← Kλ, oracles-access
to PRF(k, ·) is indistinguishable from access to truly random function H : Xλ → Yλ for any
efficient adversary. A pseudorandom permutation (PRP) PRP : Kλ × Xλ → Xλ is a PRF
such that PRP(k, ·) is a permutation for any k ∈ Kλ.

9.3.4 IV-based tweakable PRGs For analysis reasons, we define IV-based tweakable
PRG tailored specifically to our construction PRG in Figure 3.6, with block sizes of 128.
Then we define and analyze the security of PRG in two aspects: A pseudorandomness
notion which is used to prove that VOLECommit is hiding, and a injectivity-type notion
which is needed only in FAEST-EM and used to prove that VOLECommit is statistically
binding.

Definition 9.9 (IV-based tweakable PRG). An IV-based tweakable PRG is an ef-
ficient map PRGm : {0, 1}λ × {0, 1}128 × {0, 1}32 → {0, 1}α·128, where α ∈ N and output
length m = α · 128.
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Pseudorandomness notions. Since our notion of IV-based tweakable PRG is so closely tied
to PRG from Figure 3.6, we define two types of security, namely PRP-type and PRF-type
security in Definition 9.10. The underlying reason is, that as a pseudorandom function,
the fixed block size of 128 of AES would be susceptible to birthday attacks. However, by
using a divergence-based switching lemma (Corollary 9.6), we can still show security in
our setting, where signature queries will be limited to Qsig ≤ 264.

Definition 9.10 (PRP-type and PRF-type security of PRG). Let α ∈ N and let
PRGm : {0, 1}λ × {0, 1}128 × {0, 1}32 → {0, 1}α·128 be a deterministic polynomial-time al-
gorithm with output length m = α · 128 (not necessarily PRG from Figure 3.6). Let A be
a T -query adversary in the following PRP-type game:

– For k ← {0, 1}λ, iv← {0, 1}128.
– Sample b← {0, 1} and set RP = {} as an empty associative array and let B = ∅.
– Run b′ ← APRGb

(iv) where A is limited to T oracle queries and
• PRG0(k, iv, twk): Output PRGm(k, iv, twk)
• PRG1(k, iv, twk): If RP[twk] = ⊥: For i = 1, . . . , α:

∗ Sample yi ← {0, 1}128 \B
∗ Set B = B ∪ {yi}.

Set RP[twk] = (y1∥ . . . ∥yα) and output RP[twk].
– Output 1 (win) if b = b′, else 0 (lose).

Let p be the probability that A wins the game. The advantage AdvPRPPRGm
A [T ] of T -

query adversary against the PRP-type security of the (IV-based tweakable) PRG PRG is
defined as

AdvPRPPRGm
A [T ] = |2p− 1| .

Define the PRF-type game which is identical to the above, except that we implement
a (lazy sampled) random function RF instead of the random permutation RF. We write
AdvPRGPRGm

A [T ] = |2p− 1| to denote the respective advantage for PRF-type security.

We note that Definition 9.10 imposes a stronger requirement on PRG than strictly
necessary for our proofs. Namely, we let the adversary choose the tweaks freely, while in
our construction, the tweaks are dependent on the GGM layer and fixed.

Remark 9.11 (PRP-type security). It is easy to see that our PRG constructed in Fig-
ure 3.6 satisfies PRP-type security of Definition 9.10 by a straightforward reduction to
PRP security of AES with αT queries. (Observe that (by definition of AddToUpperWord
and AES-CTR) we never query AES on the same input, hence we get αT distinct queries
and thus random blocks.)

To deal with PRF-type security, we argue with ∞-divergence (Lemma 9.5 and Corol-
lary 9.6).

Lemma 9.12. Let β ∈ N and let PRGm : {0, 1}λ × {0, 1}128 × {0, 1}32 → {0, 1}β·128 be a
deterministic polynomial-time algorithm with m = β · 128. Let A be a T -query adversary
in for PRF-type security of PRG (Definition 9.10). Let GPRP denote the output of A real
PRP-type game and GRP (resp. GRF) be the output in the ideal PRP-type game (resp.
PRF-type). Then it holds that

Pr[GPRP = 1] ≤ eβ
2T 2/2128 · Pr[GRF = 1] + AdvPRPPRGm

A [T ]

Proof. Let GRP denote the ideal PRP-type game. Then

Pr[GPRP = 1] ≤ Pr[GRP = 1] + AdvPRPPRGm
A [T ]
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follows by definition. By an application of Corollary 9.6, switching the sampling of blocks
without replacement to sampling of blocks with replacement (i.e., truly at random) and
therefore to G1, leads to

Pr[GRP = 1] ≤ eβ
2T 2/2128 · Pr[GRF = 1]

Non-standard collision resistance. While we rely on injectivity of universal hashing in
FAEST under parameter choices which statistically guarantee this, we make a more aggres-
sive assumption for FAEST-EM. The assumption is a strengthening of collision resistance,
which asserts that it is hard to even find an image for which a collision exists, i.e. for
which two or more preimages exist. Note that the adversary does not need to output the
preimages, their existence suffices.

Definition 9.13 (Almost injective PRG). Let PRG(k, iv, twk) be a (IV-based tweak-
able) PRG, where k ∈ Kλ = {0, 1}λ, iv ∈ Iλ, and twk ∈ Tλ. Consider the following game,
parameterized by Qout:

1. The adversary outputs outputs iv ∈ Iλ together with Qout tuples (twkj , yj)j∈[1..Qout].
2. If for any j, there exists k ̸= k′ in Kλ such that PRG(k, iv, twkj) = yj = PRG(k′, iv, twkj),

output 1 (success). Else output 0.

We define the advantage of A in the game as

AdvInjPRGA [Qout] = Pr[The game outputs 1].

We say that PRG is almost injective if for any polynomial-time adversary and polynomial
Qout, the advantage AdvInjPRGA [Qout] is negligible.

Observe that the adversary must produce an element yj for which a collision exists to
win in Definition 9.13. Since it seems hard to tell if an image yj has at more than one
preimage, without knowing more than one preimages of it (i.e. a collision), the assumption
seems plausible.

As a sanity check, we consider a simple attacks on Definition 9.13 for the PRG con-
structed in Figure 3.6 under heuristic simplifications.

Remark 9.14 (Heuristic). We model AES as an ideal cipher and assume a bound QAES on
ideal cipher queries. The map PRG : {0, 1}λ → {0, 1}2λ with PRG(k, iv) = (AES.Enc(k, iv), . . . ,
AES.Enc(k,AddToLowerWord(iv, h))) is a random oracle in k for fixed iv (where h =
2λ/128, see Figure 3.6). We heuristically ignore the correlations caused by tweak twk
and counter i acting on the same IV space via AddToUpperWord and AddToLowerWord
respectively. Moreover, we heuristically treat ideal cipher queries and PRG queries as the
same. This heuristic is partly justified by the PRG construction; ideal cipher encryption
queries can be recovered by running PRG. We note however, that it is not clear if decryption
queries could somehow be exploited for improved attacks; we ignore them.

Next, we focus on a naive strategies an adversary could follow: Let m = 2λ, n = 22λ.
Sticking to single IV chosen in advance, and mounting a mix of birthday attack and
guessing via Qout images yj . The birthday attack part is straightforward. By focusing on

a single iv, the probability of collision with QAES PRG queries is less than
Q2

AES
n . Note that,

importantly, in this case the adversary knows for certain that it found a y with multiple
preimages. On the other hand, as long as no collisions occurred, all images are the “same”,
namely, random distinct elements. Thus, it may as well output a random subset of Qout

of these ys. The probability of success in that case is the same for each subset, and is
given by 1− (1− Qout

n )m−QAES ≤ Qout(m−QAES)
n . In summary, the success probability of this

strategy is upper-bounded by
Q2

AES
n + Qout(m−QAES)

n = QAES(QAES−Qout)
n + Qout·m

n .
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9.4 Properties of VOLECommit

9.4.1 Binding We first argue that commitments are binding, by showing that there is an
extractor algorithm that is allowed to observe random oracle queries, and will successfully
extract the adversary’s committed message with high probability. The analysis is similar
to [BBD+23b, Sec. 3.1], with the main differences being that: (1) Instead of analyzing the
vector commitments BAVC directly, we analyze the VOLECommit and VOLEReconstruct
algorithms which use them. Thus, we show the binding property on the signer’s VOLE
matrices, rather than the original vectors committed using VC (even though these are
also still binding).19 By arguing security for our specific construction, we also avoid the
security loss incurred by generic reductions in [BBD+23b]. (2) We allow for the extractor
to be unbounded. This is possible since we will reduce to soundness instead of knowledge
for the Fiat–Shamir transformation. In other words, we only rely on statistically binding
commitments, not efficiently extractable ones.

Lemma 9.15 (Extractable Binding of VOLE Commitment). Consider the follow-
ing extractable binding game for (VOLECommit,VOLEReconstruct), a stateful adversary A
and a straightline extractor Ext:

1. Commit-Phase: Let C = {} be an empty associative array.
(a) C = (com, c1, . . . , cτ−1, iv

pre)← AH0,H1,H4(commit).
(b) D = (u∗i ,V

∗
i )i∈[0,τ) = ExtH4(L0,L1, com, c1, . . . , cτ−1, iv

pre), where Lb is a set {(xi,Hb(xi))}
of query-response pairs from queries A made to the random oracle Hb.

(c) Set C[C] = D. Note that D = ⊥ is allowed.
(d) A can choose to go to Step 1a or it outputs C in C and the game continues below.

2. Decommitment-Phase: Parse C = (com, c1, . . . , cτ−1, iv
pre).

3. (chall3, decomI)← AH0,H1,H4(open) where I = (∆0, . . . ,∆τ−1)← DecodeAllChall3(chall3).
4. If I = ⊥ then output 0 (failure).
5. Let iv = H4(iv

pre).
6. For i ∈ [0..τ): (δi,0, . . . , δi,ki) := BitDec(∆i, ki)

7. (com,Q) := VOLEReconstructH0,H1(chall3, decomI , c1, . . . , cτ−1, iv, ℓ̂; param, paramVOLE).

8. Parse [Q0 . . .Qτ−10ℓ̂,w] = Q where Qi ∈ Fℓ̂×ki
2

9. Output 0 (failure) if
(a) com = ⊥ or com ̸= com (i.e., verifier rejects), or
(b) Qi = V∗i ⊕ [δi,0 · (u∗i ⊕ci), · · · , δi,kb · (u∗i ⊕ci)], for all i ∈ [0, . . . , τ) (i.e., extraction

correct).
10. Output 1 (success) otherwise.

Suppose A makes at most Q0, Q1 queries to the oracles H0,H1, respectively. Moreover,
suppose that A checks if VOLEReconstruct returns ⊥ for the purported opening decomI ,
and outputs ⊥ if that happens. There is a deterministic (unbounded) straightline extractor
Ext (defined in the security proof for FAEST) such that the advantage of A in the above
game is at most

(Q1 + 1)2

22λ
+ τQ0 · 2−λ.

There is a deterministic (unbounded) straightline extractor Ext which is allowed to program
H4 (defined in the security proof for FAEST-EM), such that the advantage of A in the above
game is at most

(Q1 + 1)2

22λ
+ AdvInjPRG2λ

B [Q4, L].

where the running time of B is roughly that of A. The IV-based tweakable PRG PRG2λ is
defined in Figure 3.6, where we restrict the tweak domain to [L− 1, L+ τ − 1].

19Note here that binding does not imply that the extracted base VOLEs consistently have the same u,
i.e., that the correction terms ci were computed honestly. This is established by additional checks.
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Intuitively, Lemma 9.15 asserts that, (after switching iv to injective mode), extraction
succeeds unless A cheats by breaking collision or preimage resistance of the random ora-
cle. This gives the advantage bounds in the lemma. The extractor will brute-force some
preimage and thus be inefficient. This will be unproblematic since the binding property
will be (switched to) statistical and the proof system will be statistically sound.

Note that A chooses the challenges ∆i, hence it can cheat in the sense that only
an opening for ∆i is “known” to A, i.e. the (extracted) commitment cannot be opened
for any other challenge than ∆i. However, as long as the extractor extracts that VOLE
correlation, this does not constitute a success for the adversary — the adversary only wins
if the extracted VOLE correlation disagrees with the opened VOLE correlation.

Remark 9.16. The requirement that A checks its purported decommitment can be re-
moved by replacing a non-conforming adversary A′ with A where this check is added. Due
to this change, the maximal number of queries Q0 (resp. Q1) to H0 (resp. H1) increases to
at most Q0 +1 (resp. Q1 + τ +1), which for concrete security makes almost no difference,
since Q0, Q1 ≫ τ .

Remark 9.17. Lemma 9.15 is a multi-challenge setting, i.e., the adversary can try many
commitments during the Commitment-Phase. This allows us to avoid losses caused by hy-
brid arguments: A reduction can simply extract all openings, and should a decommitment
ever be inconsistent, it can choose it to for the Decommitment-Phase to win the game.
Running the extractor in the reduction instead of the game leads to a subtle problem,
namely, a commitment can fail to win the extractable binding experiment even though
the reductions failed to extract it (using Ext). This case can occur if collisions or preimages
of (purported) hash value are produced after the reduction’s extractions failed, but before
it received the opening information from the adversary. As we bound the probability of
this event, it will however not complicate the use in reductions.

We use following lemma to simplify the proof of Lemma 9.15.

Lemma 9.18 (Random oracle graph game). Let H : {0, 1}∗ → Y be a random oracle
and consider following game with an adversary A. The game keeps track of a directed graph
G = (V,E), initially empty, and proceeds as follows: The adversary can (repeatedly) query
H at some x. Let H(x) = y.

– If y ∈ V but there is no edge (x′, y) ∈ E, then the adversary wins. (Preimage)

– If an edge (x′, y) ∈ E exists with x′ ̸= x, then the adversary wins. (Collision)

– Else, add nodes x and y to V and add an edge e = (x, y) from x to y to E.

Let A be an adversary which makes at most Q queries to H. Then the probability that A
wins is bounded by

Q2/ |Y| .

Proof of Lemma 9.18. The chances for A to win with a query to H (if it has not yet won)

are at most |V ||Y| . Namely, the conditions on no edge to y or an existing edge to y separate

V into two disjoint sets: Let V ′ be the set of nodes with no edges pointing to them. Let V ′′

be the set of nodes with edges pointing to them (that is, images under H). The adversary
wins if a fresh query x yields an edge to a node y in V ′ (the case ∄x′ : (x′, y) ∈ E), or if
x yields another edge to a node in V ′′ (the case ∃x′ : (x′, y) ∈ E ∧ x ̸= x′). (The former
is a preimage attack, the latter is a collision attack.) Clearly, the chances that the former

happens are |V
′|
|Y| and the chances that the latter happens are |V

′′|
|Y| , and since V ′ and V ′′

are disjoint, the chances that either happens is |V ||Y| .
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Since the set V grows by at most 2 nodes per query, we can bound the success proba-
bility of A by

Q∑
i=1

2 · (i− 1)

|Y|
≤ Q2

|Y|
.

Proof of Lemma 9.15. We first analyze the straightline extractor for FAEST. At the end
of the proof, we explain the modifications required for FAEST-EM. The core of the proof
is the extraction of the BAVC commitment com, i.e., the seeds sdi,j . Transforming the
seeds, given (chall3, c1, . . . , cτ−1, iv) to the VOLE output Q is simply post-processing of
the opening. For convenience, the extractor also applies the post-processing to compute
the VOLE relation (or ⊥ if too many seeds failed to extract).

We define the straightline extractor Ext, by looking through the lists of queries L1 as
follows.

1. Find a preimage (h0∥ . . . ∥hτ−1) of com under H1. If there is no unique preimage, i.e.,
there are none or multiple preimages, immediately output ⊥.

2. For each i ∈ [0..τ):

(a) Find a preimage (comi,1, . . . , comi,Ni) of hi under H1, where Ni = 2k if i < τ1 and
2k−1 otherwise (cf. Table 5.1). If there is no unique preimage, i.e., there are none
or multiple preimages, immediately output ⊥.

(b) For each j ∈ [0..Ni), brute-force a preimage r for comi,j under r 7→ LeafCommit(r, iv, i+
L− 1, uhashi), where uhashi is set as (uhash0, . . . , uhashτ−1) = H0(iv; 3λτ) and iv is
the IV used in the commit. That is, find r with (sdi,j , comi,j) = LeafCommit(r, iv, i+
L−1, uhashi). If there is no such preimage, set sdi,j = ⊥. If there are multiple preim-
ages, immediately output ⊥. Otherwise, remember sdi,j corresponding to comi,j .

Then, for each of the i ∈ [0, τ) VOLEs, Ext distinguishes following cases:

– Case 1 (All seeds found): If all (sdi,j)j∈[0,N) are not ⊥ for i, then Ext computes V∗i and
ũi honestly (i.e., via ConvertToVOLE) and sets ∆∗i = ⊥.

– Case 2 (Missing one seed): If a single seed is missing, say sdi,j∗ = ⊥, then Ext sets ∆∗i =
j∗ and, as in VOLEReconstruct, computes (ũi,q

′
i,0, . . . ,q

′
i,kb−1) = ConvertToVOLE(⊥,

sdi,1⊕∆∗
i
, . . . , sdi,(Ni−1)⊕∆∗

i
, iv; ℓ̂) and lets Q0 = [q′0,0 · · ·q′0,ki−1] and u∗0 = ũ0 as well as

Qi = [q′i,0 · · ·q′i,ki−1] + [δi,0 · ci · · · δi,ki−1 · ci] and u∗i = ũi⊕ ci for i > 0. With that, Ext
defines V∗i = Qi + [δi,0 · u∗i , · · · , δi,kb · u∗i ], for i ∈ [0, τ).

– Case 3 (Missing multiple seeds): If two or more seeds are ⊥ (due to missing or non-
unique preimages), say sdi,j∗1 = ⊥ = sdi,j∗2 for j∗1 ̸= j∗2 , then Ext outputs ⊥, i.e.,
extraction fails.

This yields the output (u∗i ,V
∗
i )i∈[0,τ) of Ext. While not part of its output, we make use of

the bad challenges (∆∗i )i∈[0,τ) found during extraction later. Finally, to invoke Lemma 9.18
later, we add the following actions to Ext if extraction failed:

– If extraction failed since the preimage for com (resp., some preimage for hi) was missing,
in step 1 (resp. step 2), query H1(hi) (resp., pick the smallest hi without preimage and
query H1(hi)). (Lemma 9.18 will then rule out that the adversary finds a preimage
after extraction failure.)

Note that Ext will make at most one query to H1 (per extraction).

To analyse Ext, we first consider the (graph from) the game from Lemma 9.18 and
define by Fail1 the (failure) event that, during the extractable binding game, a preimage
attack or a collision attack succeeded in the random oracle graph for H1.
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Consider the whole binding game as an adversary A to the random oracle graph game
in Lemma 9.18, where only the subroutine A′ of A makes fresh random oracle queries.
Observe that if the bad event Fail1 occurs, then A′ wins Lemma 9.18. This holds because,
either the adversary finds a random oracle collision, or it finds a preimage for a value
x which Ext could not extract. To cover the latter case in the random oracle game of
Lemma 9.18, Ext makes a additional query H1(x) which adds x as a node to the random
oracle game, so that if the adversary finds the missing preimage of x, then the game aborts.

As a consequence, failing to look up com or hi can trigger an extra query to H1 by Ext.
By Lemma 9.18 and a union bound, we therefore find

Pr[Fail1] ≤ (Q1 + 1)2/22λ

As a second step, consider the failure event Failuhash which by definition occurs if brute-
forcing sdi,j finds multiple preimages. Observe that hash LeafHash (used in LeafCommit
to hash (sd,x1)) is clearly εuhash-almost universal for εuhash = 2−3λ. Moreover, the map
r 7→ LeafCommit(r, iv, i + L − 1, uhashi) has input domain {0, 1}λ of size 2λ for each
fixed i ∈ [0..τ) and iv. Hence, at most 2λ different values (sd,x1) can be hashed through
LeafHash(uhashi, ·) for fixed (i, iv). Since uhashi is a random oracle output and thus is inde-
pendent of the hashed inputs, we find that for fixed i the map r 7→ LeafCommit(r, iv, i+L−
1, uhashi) is injective except with probability at most (2λ)2·εuhash ≤ 2−λ. Namely, by εuhash-
almost universality, for any x ̸= y ∈ {0, 1}4λ the probability that LeafHash(uhashi,x) =
LeafHash(uhashi,y) is at most εuhash (over uniform uhashi). Hence, for any set S of size
S = S, by a union bound over x ̸= y ∈ S, we have a collision with probability at most
S2/2 · εuhash. Plugging in the size S = 2λ which is hashed by LeafCommit for fixed (i, iv),
and εuhash ≤ 2−3λ, the hash LeafHash is injective with probability at least 2−λ (for uniform
uhashi). As we assume that the adversary runs VOLEReconstruct, hence queried H0 to learn
(uhash0, . . . , uhashτ−1) for iv, we find (by a union bound over all τ choices of i ∈ [0..τ) and
Q0 queries to H0) that

Pr[Failuhash] ≤ τQ0 · 2−λ

In the following, we analyze the extraction conditioned on ¬Fail where Fail = Fail1 ∨
Failuhash. Consequently, whenever the extractor does not know a preimage the game will
not encounter one (either due to a query of A or during VOLEReconstruct), and likewise,
there will never be multiple preimages. We observe the following:

– com uniquely defines (h0∥ . . . ∥hτ−1).
– hi uniquely defines (comi,0, . . . , comi,Ni−1) for i ∈ [0, τ).
– comi,j uniquely defines sdi,j .

20

Thus, it is only possible for A to open com successfully (i.e., com = com ̸= ⊥) if

– Whenever ∆∗i = ⊥, i.e., hi could be fully extracted, then

Qi = V∗i ⊕
[
δi,0 · u∗i · · · δi,kb · u∗i

]
.

This can be seen as follows: By the condition ¬Fail, the reconstructed seeds sd′i,j in
VOLEReconstruct coincide with the (extracted) seeds sdi,j⊕∆i for j ∈ [0, N), except
that sd′i,j = ⊥. Proposition 5.2 asserts that in this case, the equality Qi = V∗i ⊕[
δi,0 · u∗i · · · δi,kb · u∗i

]
holds, as required.21

20Note that attacks on the GGM tree, i.e., on PRG, are not possible here, as the GGM tree is only used to
compress the decommitment for BAVC.Reconstruct. The checks and extraction rely only on (sdi,j , comi,j) =
LeafCommit(...), in the notation of BAVC.Reconstruct.

21More explicitly, it follows from Proposition 5.2 and Q0 = V∗
0 + [δ0,0 · u′

0 · · · δ0,k0−1 · u′
0] as well as

Qi = Q′
i + [δi,0 · ci · · · δi,ki−1 · ci] = V∗

i + [δi,0 · u′
i · · · δi,ki−1 · u′

i] + [δi,0 · ci · · · δi,ki−1 · ci] for i > 0.
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– Whenever ∆∗i ̸= ⊥, the choice ∆i of A is ∆∗i . Otherwise, A would lose: If ∆∗i ̸= ⊥,
then at least one commitment comi,j could not be extracted, hence this challenge must
be used by A otherwise it could not successfully decommit (due to condition ¬Fail). If
challenge ∆∗i is used, then by condition ¬Fail and Proposition 5.2, we again find that

the equality Qi = V∗i ⊕
[
δi,0 · u∗i · · · δi,kb · u∗i

]
holds, as required.

Thus, we have shown that if Fail does not occur, extraction always succeeds and coincides
with the opening in the Decommitment-Phase. This concludes the proof for FAEST.

Now, we explain the changes required for FAEST-EM. Essentially, we can apply the
exact same argument, except that we reduce to almost injectivity (Definition 9.13) to
ensure that extraction of the challenge commitments succeeds. The only difference, due
to the different LeafHash, which occurs in the proof is an extraction failure when comi,j

has multiple preimages. To exclude this, we reduce to almost injectivity by outputting
the challenge iv and Qout = L commitments, namely, all the comi,j which belong to
the challenge commitment. Observe that an extraction failure due to multiple preimages
for comi,j now implies that the reduction wins the almost injectivity game. Thus, we

constructed an adversary B with advantage AdvInjPRG2λ
B [L] and running time roughly that

of A.

9.4.2 Hiding Next, we show that VOLECommit is hiding. To do this, we model our
use of random IVs in PRGs with the following multi-target security game. The batch size
L denotes the number of times the PRG is used with the same IV, while the number of
queries denotes the number of independent IVs used. In the AES-CTR construction we
use, increasing L degrades security by a factor of up to L, while increasing Q does not
lead to any practical loss.

Remark 9.19 (BAVC opening aborts). Observe that BAVC.Open aborts for certain chal-
lenges I = (∆0, . . . ,∆τ−1). These aborts depend solely on I, and are independent from
decom. In particular, it is efficiently verifiable if a choice I causes an abort.

Lemma 9.20 (VOLECommit is multi-hiding). Let H0,H1 be random oracles. Consider
the following multi-hiding experiment for VOLECommitH0,H1 and a Q-query adversary A,
defined for some arbitrary ℓ̂, param.

1. Sample b∗ ← {0, 1}
2. For j ∈ [1, Q]:

– rj ← {0, 1}λ, ivj ← {0, 1}128
– (comj , decomj , (cji )i∈[1,τ),u

j ,Vj) := VOLECommit(rj , ivj , ℓ̂; param, paramVOLE)

– Sample challj3 ← {0, 1}λ−wgrind × 0wgrind uniformly, conditioned on BAVC.Open not

aborting for Ij = (∆j
0, . . . ,∆

j
τ−1) := DecodeChall3(chall

j
3; param) (cf. Remark 9.19).

– decomIj := BAVC.Open(decomj , Ij)

– Let uj
$ ← Fℓ̂

2 and define

(uj , cj1, . . . , c
j
τ−1) =

{
(uj , cj1, . . . , c

j
τ−1) if b∗ = 0

random from (Fℓ̂
2)

τ if b∗ = 1

3. b← AH0,H1((uj , (cji )i∈[1,τ), (decom
j)i∈[0..τ), chall

j
3, com

j)j∈[1,N ])
4. Output 1 (success) if b = b∗. Else output 0 (failure).

Write PRGlen(s) = PRG(s; len) and β = λ
128 . Let G∗i be the hiding game with b∗ = i.

Then we have

Pr[G∗0 = 1] ≤ eQτ
(
4⌈log(L)⌉β2+16β2N2

0+(⌈ℓ̂/128⌉)2
)
/2128 ·

(
Pr[G∗1 = 1]+

Qτ ·
(
⌈log(L)⌉ · AdvPRPPRG2λ

B1 [1] + AdvPRGLeafCommit
B2 [N0] + AdvPRP

PRGℓ̂
B3 [1]

))
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where by abuse of notation, we write AdvPRGLeafCommit which is

– AdvPRPPRG4λ in FAEST
– AdvPRPPRG2λ in FAEST-EM

as the advantage pertains to the respective PRG evaluation in LeafCommit. The same
holds against quantum adversaries, in which case the advantage terms are with respect
to quantum adversaries.

Note that we can sample the challenges (challj3)j∈[1,Q] before committing without chang-
ing the adversary’s view (because whether or not BAVC.Open rejects a challenge is inde-
pendent from the actual commitment). Hence, all decommitment indices for all VC com-
mitments are known at commitment time. That is, we only assert selective security.

Proof. As remarked above, we assume that (challj3)j∈[1,Q] is sampled before the commit-
ments are generated, so that we are obviously in a selective security setting for BAVC
openings. We argue in two main steps: First, we replace the hidden outputs of the BAVC
commitments with true randomness. Then, we replace the output of ConvertToVOLE.
In the end, each uj

i will be uniformly random, as required. (This follows since u =∑
i∈[0,τ) PRG(sdi, iv, i; l̂) in ConvertToVOLE.. Thus, if a single summand is truly random,

so is u output by ConvertToVOLE.)
Game G0 (Real hiding experiment with b = 0). By definition, G0 = G∗0 is the hiding

experiment with the challenge bit b∗ = 0, i.e., the outputs (uj , cj1, . . . , c
j
τ−1) corresponds

to the generated commitment.
For simplicity, we describe the reductions first for Q = 1 instead of the multi-challenge

setting and omit the superscript j. Since all VOLECommit instances are independent, it is
straightforward to generalize it to Q > 1, as we will show in the final step.

Game G1 (Randomize hidden GGM tree seeds). In game G1, we replace all hidden
seeds kαi in the (de)commitment with truly random seeds.

We make use of the proof that the GGM construction is a selectively secure puncturable
PRF from a length-doubling PRG, and use the hybrids to (eventually) randomize the
hidden seeds. Following that proof, we successively replace PRG calls along the path from
the root to the leaf αi = BAVC.PosInTree(i,∆i) (for i ∈ [0, τ)) by truly random outputs.
After at most τ⌈log(L)⌉ hybrid steps, the leaf seeds kαi are replaced with random values.
By applying Corollary 9.6 and Remark 9.7 we arrive at

Pr[G0 = 1] ≤ (e(2β)
2/2128)τ⌈log(L)⌉(Pr[G1 = 1] +

∑
i=1

AdvPRPPRG2λ
B1.i [1])

= e4τ⌈log(L)⌉β
2/2128(Pr[G1 = 1] + τ⌈log(L)⌉ · AdvPRPPRG2λ

B1 [1])

since each call to PRG(kα, iv, α; 2λ) in line (7) of BAVC.Commit outputs 2β = 2λ
128 blocks

for T = 1 queries and we have at most τ⌈log(L)⌉ hybrid steps.
Game G2 (Randomize hidden LeafCommit outputs). In game G2 for FAEST, we re-

place the outputs (sdi,∆i , comi,∆i) corresponding to the hidden leaves α0, . . . , ατ−1 in
line XXX(10) of BAVC.Commit by the image LeafHash(uhash, sdi,∆i∥s0∥s1∥s2) for ran-
dom (sdi,∆i , s0, s1, s3)← {0, 1}4λ. Note that {0, 1}4λ ∋ x 7→ LeafHash(uhash,x) ∈ {0, 1}3λ
maps uniform distributions to uniform distributions by construction. Hence, the output
(sdi,∆i , comi,∆i) will be uniform.

In game G2 for FAEST-EM, we instead sample comi,∆i ← {0, 1}2λ. (Since we consider
hidden sdi,∆i , we do not need to sample it in FAEST-EM.) For simplicity, we focus on
FAEST.LeafCommit below.

Since in game G1, all seeds kαi are truly random, we can apply pseudorandomness of
LeafCommit to replace the outputs (sdi,∆i , comi,∆i) corresponding to leaves α0, . . . , ατ−1.
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Again, we apply Corollary 9.6 and Remark 9.7 to arrive at

Pr[G1 = 1] = (e(4β)
2N2

0 /2
128

)τ (Pr[G2 = 1] +

τ∑
i=1

AdvPRPPRG4λ
B2.i [Ni])

≤ e16τβ
2N2

0 /2
128

(Pr[G2 = 1] + τ · AdvPRPPRG4λ
B2 [N0])

since each call PRG(kαi , iv, α; 4λ) outputs 4β = 4λ
128 blocks for T = Ni queries, and Ni ≤ N0

by definition of Ni (see Table 5.1).

Coming back to FAEST-EM, the only difference is that instead of AdvPRPPRG4λ
B2.i [Ni],

we reduce to a PRG with 2λ output length, i.e., we have AdvPRPPRG2λ
B2.i [Ni] in the above

and the factor 16 becomes 4.

Game G3 (Switch ConvertToVOLE to random). In game G3, we replace the output of

r0,0 = PRG(sdi,∆i , iv, i; l̂) in line (2) of that ConvertToVOLE computation called from
VOLECommit line (4) by true randomness. In the output of ConvertToVOLE, u equals
u =

∑
i∈[0,τ) PRG(sdi, iv, i; l̂) and thus if ri,0 is truly random, so is u. Hence, all ui in

VOLECommit line (4) are truly random. Consequently, the outputs u and ci = ui ⊕ u
(from lines (7) and (9)) are truly random in G3.

By the change in game G2, we know that the seed sdi,∆i which is input into ConvertToVOLE
in line (4) of VOLECommit is truly random, so we can reduce to PRG security as before.
We get

Pr[G2 = 1] = (e(⌈ℓ̂/128⌉)
2/2128)τ (Pr[G3 = 1] +

τ∑
i=1

AdvPRP
PRGℓ̂
B3.i [1])

≤ eτ(⌈ℓ̂/128⌉)
2/2128(Pr[G3 = 1] + τ · AdvPRPPRGℓ̂

B3 [1])

since we have ⌈ℓ̂⌉128 blocks of output in PRG(sdi, iv, i; ℓ̂) in for the i-th run of ConvertToVOLE
(for i ∈ [0, τ − 1]), where each only has T = 1 queries. All in all, we have shown that
modifying the single-challenge experiment from b∗ = 0 to b∗ = 1 is indistinguishable.

Final step: Handling Q > 1. Let G4 the multi-challenge game with b∗ = 1. By plugging
the above inequalities for games 1 to 3 in another, we see that game G3 (for Q = 1) satisfies

Pr[G0 = 1] ≤ e(4τ⌈log(L)⌉β
2+16τβ2N2

0+τ(⌈ℓ̂/128⌉)2)/2128 ·
(
Pr[G3 = 1]+

τ⌈log(L)⌉ · AdvPRPPRG2λ
B1 [1] + τ · AdvPRPPRG4λ

B2 [N0] + τ · AdvPRPPRGℓ̂
B3 [1]

)
Applying the same reasoning for a hybrid with Q commitments, we therefore arrive at

Pr[G0 = 1] ≤ (e(4τ⌈log(L)⌉β
2+16τβ2N2

0+τ(⌈ℓ̂/128⌉)2)/2128)Q ·
(
Pr[G4 = 1]+

Qτ⌈log(L)⌉ · AdvPRPPRG2λ
B1 [1] +Qτ · AdvPRPPRG4λ

B2 [N0] +Qτ · AdvPRPPRGℓ̂
B3 [1]

)
≤ eQτ

(
4⌈log(L)⌉β2+16β2N2

0+(⌈ℓ̂/128⌉)2
)
/2128 ·

(
Pr[G4 = 1]+

Qτ ·
(
⌈log(L)⌉ · AdvPRPPRG2λ

B1 [1] + AdvPRPPRG4λ
B2 [N0] + AdvPRP

PRGℓ̂
B3 [1]

))
This concludes the claim for the multi-challenge setting. Note that the contribution of
AdvPRPPRG4λ changes to AdvPRPPRG2λ for FAEST-EM (and the term 16β2N2

0 could be
reduced to 4β2N2

0 ).

Observing that we did not make use of A’s structure in any way yields the post-
quantum security statement.
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9.4.3 Unpredictability We define unpredictability in a slightly non-standard manner,
namely we let the adversary A output a bit and replace that bit with 0 if it succeeded in
guessing. This is tailored to our application of unpredictability, where A will actually be
a (hybrid) game which outputs 1 if the EUF-CMA adversary succeeds. Hence, replacing
the output 1 with 0 means that the EUF-CMA adversary loses the modified EUF-CMA
game if it predicts a commitment.

Lemma 9.21 (VOLECommit is unpredictable). Fix some ℓ̂ ∈ N and admissible param,

paramVOLE. Let A be an adversary in the following game ExpUnpred
VOLECommit,ℓ̂,param,paramVOLE
b,A (λ):

1. (Lcom, state)← AH0,H1(1λ). Here Lcom is list of commitment guesses.

2. r ← {0, 1}λ, iv← {0, 1}128
3. C = (com, decom, c1, . . . , cτ−1,u,V)← VOLECommit(r, iv, ℓ̂; param, paramVOLE)

4. Let b′ ← AH0,H1(state, C).

5. If (com, c1, . . . , cτ−1) ∈ Lcom and b = 1 output 0. Else output b′.

For brevity, let Gb denote ExpUnpred
VOLECommit,ℓ̂,param,paramVOLE
b,A for b ∈ {0, 1}. Also let β =

λ
128 ∈ N. For any adversary A which makes at most Q1 queries to H1, and outputs lists L
of size at most Qcom we have

Pr[G0 = 1] ≤e(4⌈log(L)⌉β2+16β2)/2128 ·
(
Pr[G1 = 1]

+ ⌈log(L)⌉ · AdvPRPPRG2λ
B [1] + AdvPRPLeafCommit[1] + (2Q1 +Qcom) · 2−2λ

)
where by abuse of notation, we write AdvPRPLeafCommit for AdvPRPPRG4λ in FAEST, and
AdvPRPPRG2λ in FAEST-EM.

We note that, intuitively, unpredictability follows immediately from hiding (by replac-
ing the outputs ci with true randomness). However, we claim a concretely better bound
on the adversary success, which we argue below.

Proof. The proof is a simpler version of hiding: Apply the same game hops as in games
G0 to G2 the proof of Lemma 9.20 but only to randomize a single leaf, say (i, j) = (0, 0)
and denote the resulting game as G′2. (Do not continue to G3, as we need not randomize
u, c1, . . . , cτ−1.) Then, the leaf commit com0,0 ∈ {0, 1}2λ is truly random and we have

Pr[G0 = 1] ≤e(4⌈log(L)⌉β2+16β2)/2128 ·
(
Pr[G′2 = 1]

+ ⌈log(L)⌉ · AdvPRPPRG2λ
B [1] + AdvPRPLeafCommit[1]

)
(4)

Further, h0 is uniformly random, unless H1 was queried before on the random com0,1 ∈
{0, 1}2λ, which happens with probability at most Q1/2

2λ. Further, com is uniformly ran-
dom, unless H1 was queried before on an input starting with the random h0 ∈ {0, 1}2λ,
which happens with probability at most Q1/2

2λ. Finally, note that since com is uni-
formly random, also the probability that (com, decom, c1, . . . , cτ−1,u,V) ∈ Lcom is at
most Qcom/2

2λ. Hence

Pr[G′2 = 1] ≤ Pr[G1] + (2Q1 +Qcom) · 2−2λ.

We arrive at the claimed advantage.
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9.5 EUF-KO

Building on the previous analysis, we now argue security of the overall signature scheme.
We first consider EUF-KO security, that is, a key-only attack where the adversary must
output a forgery given only the public key. Then, we extend this to EUF-CMA security,
where the adversary also has access to a signing oracle.

Definition 9.22 (EUF-CMA and EUF-KO Security). A signature scheme SIG =
(KeyGen,Sign,Verify) is existentially unforgeable against chosen message attacks (EUF-
CMA) (resp. existentially unforgeable against key-only attacks (EUF-KO)) in the ran-
dom oracle model if any PPT adversary has at most negligible advantage of winning the
EUF-CMA (resp. EUF-KO) security game (Figure 9.1). We denote by AdvEUFCMASIG

A =
Pr[ExpEUFKOSIG

A = 1] (resp. AdvEUFKOSIG
A = Pr[ExpEUFKOSIG

A = 1]) the advantage of an
adversary A.

ExpEUFCMA ExpEUFKO

1 : M := ∅

2 : (pk, sk)← KeyGenHparam, paramOWF)

3 : (msg, σ)← AH ,OSign (param, paramOWF, pk)

4 : return VerifyH(msg, pk, σ; param, paramOWF) ∧msg /∈M

OSign(msg)

1 : M :=M∪ {msg}
2 : return SIG.Sign(sk,msg)

Fig. 9.1: The EUF-CMA and EUF-KO security experiments in the random oracle model; H is a short-hand
for any number of random oracles. Only for EUF-CMA does A get access to OSign.

For the proof of EUF-KO security, we first need the following technical fact.

Lemma 9.23. Let F : K → Y be a PRG and let A be any (potentially unbounded) distin-
guisher, i.e., some predicate A : Y → {0, 1}. Then

Pr
y←im(F )

[A(y) = 1] ≤ dom(F )

im(F )
· Pr
x←dom(F )

[A(F (x)) = 1]

At a high level, Lemma 9.23 relates the uniform distribution over the image of the
PRG F and its image distribution, and allows us to switch from the former to the latter.

Proof. Since any predicate A defines a set E = {A(y) = 1} ⊆ Y, the claim will follow
from ∞-divergence (Lemma 9.5) of the probability distributions I and J over Y, where I
is the uniform distribution over im(F ) and J is the distribution given by F (x) for uniform
x← X . Clearly, if Pr[I = y] = 0 then also Pr[J = y] = 0, hence Pr[I = y]/Pr[J = y] ≤ ∞.
Moreover, for y ∈ supp(I), we have Pr[I = y] = 1

|im(F )| and Pr[J = y] ≥ 1
|dom(X)| . Thus

Pr[I = y]

Pr[J = y]
≤ |dom(X)|
|im(X)|

and the claim follows by Lemma 9.5.

We are now ready to prove EUF-KO of FAEST.

Theorem 9.24 (FAEST is EUF-KO). Let H0, H1 and H0
2,H

1
2,H

2
2,H

3
2 and H4 be modeled as

random oracles and (param, paramOWF, paramVOLE) be parameters of the FAEST signature.
Let A be an adversary which, for simplicity, runs FAEST.Verify on its purported forgery
and outputs ⊥ if verification fails. Let Q0, Q1, Q2,i, Q3, Q4, and Q5 , denote upper
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bounds on the number of queries of A to H0, H1, H
i
2, H3, H4, respectively, and let Q2 =

Q2,1 +Q2,2 +Q2,3. Suppose that ℓ̂ ≤ 213, ℓ′ ≤ 213 and 2 log2(τ) ≤ min{B, 50}. Then

AdvEUF-KO
A ≤ 1

1− dom(OWF)
cod(OWF)

·
(
AdvSndFAESTB2 + AdvPRGOWF

B1
)

where OWF is the OWF (or more precisely, PRG) defined by paramOWF, and

AdvSndFAESTB2 ≤(Q2,0 +Q2,1 +Q2,1 +Q2,3 + 4)2/22·λ

+
(Q1 + 1)2

22λ
+ AdvLeafCollLeafCommit

+ (Q2,1 +Q2,1 +Q2,3 + 9) · 3/2λ

with

– AdvLeafCollLeafCommit
B′ ≤ τQ0 · 22λ · εuhash ≤ τQ0 · 2−λ for FAEST.

– AdvLeafCollLeafCommit
B′ ≤ (QAES + 1)2 · 2−2λ for FAEST-EM.

For FAEST and FAEST-EM, the key generation algorithm KeyGen excludes keys with
bits k[0] = k[1] = 1. Thus, dom(OWF)

cod(OWF) = 3
4 and 1

1−dom(OWF)
cod(OWF)

= 4.

Remark 9.25. As in Lemma 9.15, the assumption that A checks that the forgery verifies,
ensures that the game does not query undefined values of any random oracle for the
forgery verification. For a general A, we can always replace it by an A′ where the check
is added. This modification increases the number of random oracle queries to at most
Q0 + 1, Q1 + τ + 1, Q2,1 + 1, Q2,2 + 1, Q2,3 + 1 for H0, H1, H

1
2, H

2
2, H

3
2 respectively. Since

Q0, Q1, Q2 ≫ τ , the effect on concrete security is minimal.

Before we argue security, we provide a high-level outline of our strategy. Observe that
the signature is a Fiat–Shamir transformed VOLE-in-the-head proof of knowledge of a
secret key k to the public key pk = (x,y). The proven relation asserts OWFx(k) = y ∈
{0, 1}λ. Observe also that we ensure in KeyGen that k[0] = 1 = k[1] does not occur in
a secret key. In particular, the effective domain of OWFx is a 3

4th fraction Kλ of {0, 1}λ.
Thus, at least 3

4th of all y ∈ {0, 1}λ have no preimage. Hence, for such pk, there exists
no secret key and the statement is false. This allows us to reduce to soundness instead of
knowledge soundness.

Our security reduction for EUF-KO goes through several steps to eventually reduce
security of the Fiat–Shamir transformed VOLE-in-the-head proof system to the round-by-
round soundness of a derived interactive oracle proof. The first step switches the public
key pk = (x,y) to truly random. In particular, with probability at least 1

4 , the public key
is not in the relation, and thus a forgery breaks soundness of the proof system. This is
unlike in [BBD+23b], and follows the approach of Katz and Wang [KW03], which allows
us to rely on soundness of the derived interactive oracle proof.

Next, we make explicit the interactive proof underlying FAEST, and reduce EUF-KO
security to state-restoration security of said interactive proof. By (inefficiently) extracting
the commitments in the proofs, we turn an adversary against the interactive proof into
an (inefficient) adversary against an interactive oracle proof (IOP) which captures FAEST
with idealized VOLECommit. For this IOP, we can apply the theorem that round-by-round
(RBR) soundness implies state-restoration soundness, and thus it suffices to prove RBR
soundness of the IOP induced by FAEST. This then follows from information-theoretic
arguments for the VOLE consistency check of [Roy22], universal hashing, and the Quick-
Silver check [YSWW21], similar to [BBD+23b].
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What remains is to upgrade EUF-KO security to EUF-CMA security. To do this, we
need to implement the signing oracle without the secret key. We do this as usual: We run
an honest-verifier zero-knowledge simulator and we program the simulated challenges into
the Fiat–Shamir random oracles H1

2,H
2
2,H

3
2. The unpredictability of BAVC commitments

ensures that it is unlikely that programming the RO fails (because the adversary will not
have queried the input belonging to the programmed output beforehand). To ensure that
simulated and real transcripts are indistinguishable, we rely on the hiding property of the
BAVC commitment scheme. We note here a technical detail in our proof, namely, that the
fixed blocksize of 128 bits of AES necessitates the “divergence based” approach for hiding,
and simulatability and relies on the upper bound of 264 signature queries, independent
of the security parameter. Aside from this, the upgrade from EUF-KO to EUF-CMA is
completely standard.

The difference in FAEST and FAEST-EM lies in the extractability assumption needed for
(leaf) commitments (and the choice of OWF). For FAEST, our construction is statistically
secure (in the random oracle model), but this requires a universal hash with 3λ output
length per leaf commit. For FAEST-EM, we make a stronger assumption (Definition 9.13)
on PRG2λ, which allows us to keep the 2λ output length, which is minimal by the birthday
bound. Thus, the proofs for FAEST and FAEST-EM are completely analogous, except for
this difference in extraction of leaf commitments.

Proof of Theorem 9.24. We argue via game hops. We prove the result for FAEST first, and
then explain what changes for FAEST-EM We write Gi for the output of the i-th game.

Game G0: This is the real EUF-KO security game. As in the EUF-KO game, we let sk,
pk be the generated challenge secret and public key, respectively. We have

Pr[G0 = 1] = AdvEUFKOFAEST
A

Game G1: In this game, we change pk := (x,y) from honestly generated to truly
random, i.e., to x← {0, 1}Nst-bits , y← {0, 1}Nst-bits . By a straightforward reduction to PRG
security, we obtain an adversary whose running time is roughly that of the EUF-KO game.
We have

|Pr[G1 = 1]− Pr[G0 = 1]| ≤ AdvPRGOWF
B1 [1]

as there is a straightforward reduction to a distinguisher B1 which gets a single sample y
that is either the OWF-output y = OWFx(k) := Fk(x) (for secret k← {0, 1}λ and public
parameters x← {0, 1}Nst-bits) or a random y← {0, 1}Nst-bits .

Splitting Game G1: Now, we derive a bound on the probability Pr[G1 = 1] by
distinguishing two events: The event I, that y ∈ im(OWFx), i.e., (x,y) is a valid public
key, and the negated event ¬I, where there exists no key such that Fk(x) = y. Observe
that we can apply Corollary 9.35 to bound the advantage that A wins G1 conditioned on
¬I; in this case, the EUF-KO adversary A breaks the soundness of the proof system. For
the advantage p in Corollary 9.35, we write AdvSnd below, to indicate the soundness of
the Fiat–Shamir transformed proof system of FAEST. We have that

Pr[G1 = 1 | ¬I] ≤ AdvSndFAESTB2 .

On the other hand, we have from Lemma 9.23

Pr[G1 = 1 | I] ≤ |dom(OWF)|
|im(OWFx)|

· Pr[G0 = 1]

Top of Section 9 82 Table of Contents



the left hand side is G1 with a uniformly random image y of OWFx and the right hand
side is the distribution of y under OWFx. Note that we omit x from domain and codomain
of OWF, since these are independent of the parameter x. Thus, we derive

Pr[G1 = 1] = Pr[I] · Pr[G1 = 1 | I] + Pr[¬I] · Pr[G1 = 1 | ¬I]

≤ Pr[I] · |dom(OWF)|
|im(OWFx)|

Pr[G0 = 1] + Pr[¬I] · AdvSndFAESTB2

≤ |dom(OWF)|
|cod(OWF)|

Pr[G0 = 1] + AdvSndFAESTB2

where the last step uses Pr[I] = |im(OWFx)|
|cod(OWF)| and Pr[¬I] ≤ 1. The latter holds, since a

uniformly random pk ← cod(OWF) lies in im(OWF) with probability im(OWFx)
cod(OWF) . By the

first game hop, we have

Pr[G0 = 1] ≤ Pr[G1 = 1]+AdvPRGOWF
B1 ≤ dom(OWF)

cod(OWF)
Pr[G0 = 1]+AdvSndFAESTB2 +AdvPRGOWF

B1

and resolving for Pr[G0 = 1] yields

Pr[G0 = 1] ≤ 1

1− dom(OWF)
cod(OWF)

·
(
AdvSndFAESTB2 + AdvPRGOWF

B1
)

(5)

which yields the claim after plugging in the advantage from Corollary 9.35.

9.5.1 Interactive proof induced by FAEST We define interactive proofs (IP) and
present the one derived from the FAEST signature scheme.

Definition 9.26 (Interactive proof system). (Extracted from [CY24, Section 13.1].)
An interactive proof (IP) for relation R in the random oracle model is a tuple of algorithms
IP = (PIP,VIP) where the prover and the verifier interact over k ∈ N rounds as follows,
with access to one or more random oracles.

– The IP prover PIP receives as input the instance x and a witness w where (x,w) ∈ R
and the IP verifier VIP receives as input only the instance x.

– In each round i ∈ [k], the prover PIP, with access to one or more random oracles, sends
a message αi and then the verifier VIP responds with a (possibly empty) message ρi.

– After the interaction, VIP outputs a bit, where 1 denotes acceptance and 0 denotes
rejection, computed based on the instance x, the random oracle queries, the prover
messages (αi)i∈[k] and the verifier messages (ρi)i∈[k].

Definition 9.27 ([CY24, Definition 13.2.1]). The state-restoration experiment for
IP = (PIP,VIP), in the random oracle model, with salt sizes si ∈ N, randomness functions
rnd = (rndi)i∈[k] ∈ U((ri)i∈[k]), and IP state-restoration prover P̃sr

IP is defined in Figure 9.2.

We say that P̃sr
IP is t-move if it exits the while loop after at most t iterations.

Definition 9.28 ([CY24, Definition 13.2.2]). IP = (PIP,VIP) has state-restoration
soundness error ϵsrIP if for every salt sizes si ∈ N, move budget k ∈ N, k-round malicious

IP state-restoration prover P̃sr
IP,

Pr

x /∈ L (R) rnd = (rndi)i∈[k] ← U((ri)i∈[k])

∧ VIP(x, (αi)i∈[k], (ρi)i∈[k]) = 1 (x, (αi)i∈[k], (sti)i∈[k], (ρi)i∈[k])←
ExpsrIP((si)i∈[k], r, P̃sr

IP)

 ≤ ϵsrIP((si)i∈[k], k)
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ExpsrIP((si)i∈[k], rnd, P̃sr
IP)

1 : H← U(2λ)
2 : while P̃sr

IP doesn’t exit:

3 : P̃sr
IP

H outputs (x, (α1, . . . , αi), (st1, . . . , sti)) where sti ∈ {0, 1}si

4 : Set ρi ← rndi(x, (α1, . . . , αi), (st1, . . . , sti))

5 : Give ρi to P̃sr
IP

H

6 : P̃sr
IP

H exits with output (x, (αi)i∈[k], (sti)i∈[k])

7 : for i ∈ [k], set ρi ← rndi(x, (αi)i∈[k], (sti)i∈[k])

8 : return (x, (αi)i∈[k], (sti)i∈[k], (ρi)i∈[k])

Fig. 9.2: The state-restoration game for IPs.

VH0,H1,H4
IP (x, (α1, . . . , α4), (ρ1, . . . , ρ4))

1 : // Decode input

2 : Write x = (pk, param, paramOWF), α1 = (com∥c1∥ . . . ∥cτ−1∥ivpre), α2 = (ũ∥D∥d),
α3 = (ã0∥ã1∥ã2), α4 = (decomI)

3 : Set chall1 := ρ1, chall2 := ρ2, chall3 := ρ3

4 : Set (δ0, . . . , δλ−1) := chall3

5 : Set iv← H4(iv
pre)

6 : // Reconstruct VOLEs and check commitment

7 : (c̃om,Q)← FAEST.VOLEReconstructH0,H1(decomI , chall3, c1, . . . , cτ−1, iv; param)

8 : if c̃om = ⊥ or c̃om ̸= com or chall3[λ− wgrind, λ) ̸= 0 then return false

9 : // Apply the VOLE correction values and check consistency

10 : Q̃← VOLEHash(chall1,Q) ∈ {0, 1}(λ+B)×λ

11 : if D ̸= Q̃⊕ [δ0 · ũ · · · δλ−1 · ũ] then return false

12 : // Compute AES consistency values

13 : â0 ← ZK.OWFVerify(d,Q|[0..ℓ+λ), chall2, chall3, ã1, ã2, pk; param, paramOWF)

14 : return true if â0 = ã0 else false

Fig. 9.3: The FEAST interactive proof verifier.

In Figure 9.3 we define the IP verifier VIP with k = 4 for FAEST explicitly. Note
that, when interacting with any honest prover, the protocol running with VIP has a very
large completeness loss. This is because chall3 must be zero in the last wgrind bits, which
is only true with small probability in the honest SRS experiment from Definition 9.27.
This is, however, of no importance for the proof, which only considers a reduction to the
state-restoration soundness of the FAEST IP.

9.5.2 From EUF-KO to SR soundness We begin with a proposition that we need
in the construction of the reduction:

Proposition 9.29 (Random oracle list game). Let n ∈ N and for i ∈ {0, . . . , n+ 1}
let Yi,Y ′i ⊂ {0, 1}∗ be finite sets. For each i ∈ {0, . . . , n} let Hi : Yi × Y ′i → Yi+1 be a
random oracle. Define Y = minni=1 |Yi|.

Consider the following game with an adversary B: For i ∈ [1..n] the game keeps track
of initially empty lists Li ⊂ Yi and proceeds as follows: For i ∈ {0, . . . , n} the adversary
can (repeatedly) query each Hi on an input x, x′, producing an output y:

1. When querying y = Hi(x, x
′), if y ∈ Li+1 then the adversary wins.

2. Thereafter if i ≥ 1 then add x to Li.
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Let B be an adversary which makes at most Q queries to the oracles H0, . . . ,Hn. Then
the probability that B wins is bounded by

Q2/(2 · Y ).

Proof of Proposition 9.29. Clearly, B can only win by querying H0, . . . ,Hn−1. At the first
query, the adversary cannot win because each Li is empty. At the second query, it can win
with probability at most maxni=1

1
|Yi| ≤ 1/Y if the previous query was to H1, . . . ,Hn. This

is because the output of the oracle to which the query is now made is uniformly random in
the respective Yi and will match the single element on a list (if it exists) with probability
1/|Yi|. At the third query, this probability is at most maxni=1

2
|Yi| ≤ 2/Y as the chance is

maximal if both previous queries where to the same Hi. By a union bound, B will win
during any of the queries with probability at most

Q∑
i=1

i− 1

Y
≤ Q2

2 · Y
.

We now prove that any attacker against the EUF-KO security of FAEST can be used
to construct an attacker against an SRS IP with verifier VIP.

Lemma 9.30. Let R be the relation such that (x,w) ∈ R if x is a public key and w the
corresponding signing key for the FAEST signature scheme (with parameters param, paramOWF, paramVOLE

which will be left implicit). Let x = pk = (x,y) ∈ {0, 1}4λ be a purported public key, and let
A be a (non-uniform) algorithm with access to random oracles H0,H1,H

0
2,H

1
2,H

2
2,H

3
2,H3,H4

playing the EUF-KO game of Definition 9.22 with public key pk. Suppose A wins the game
with probability at least p.22 Suppose further that A makes at most Q2,0, Q2,1, Q2,2, Q2,3

queries to each of the random oracles H0
2,H

1
2,H

2
2,H

3
2, respectively.

Then there exists a 4-round probabilistic algorithm P̃sr
IP for the relation R with access

to the random oracles H0,H1,H
0
2,H3,H4 that wins the state-restoration game of Defini-

tion 9.27 with probability at least p − (Q2,0 + Q2,1 + Q2,1 + Q2,3 + 4)2/22·λ against VIP.
Moreover, P̃sr

IP makes at most (Q2,1 + Q2,1 + Q2,3 + 4) queries to the SRS game and its
running time is roughly that of A.

Proof. We define a malicious prover P̃sr
IP against the state-restoration soundness based

onA. Note thatA is non-interactive and interacts with the random oracles H0,H1,H
0
2,H

1
2,H

2
2,

H3
2,H3,H4 during the EUF-KO game. P̃sr

IP is defined for an interactive game, where the
messages from the SRS experiment will replace the responses from H1

2,H
2
2,H

3
2.

P̃sr
IP starts A with the pk as well as param, paramOWF, paramVOLE as inputs. P̃sr

IP runs
the EUF-KO game with A and simulates access to the random oracles. Whenever A makes
a query to any of H0,H1,H

0
2,H3,H4, P̃sr

IP observes it and forwards it to a random oracles
it has access to itself, passing the response back to A. For queries to the random oracles
H1
2,H

2
2,H

3
2 P̃sr

IP runs the following RO simulation:

– When A makes a query µ∥com∥c1∥ . . . ∥cτ−1∥ivpre to H1
2,

1. P̃sr
IP checks if µ was previously returned to A as a response to a query to H0

2; if not,
P̃sr
IP returns a randomly sampled chall1 to A and puts µ on the bad list.

2. Otherwise, P̃sr
IP recovers the pk and msg that were queried to H0

2 to create an
instance x, and outputs (x, (α1), (st1)) to Exp

sr
IP, where α1 = com∥c1∥ . . . ∥cτ−1∥ivpre

and st1 = µ serves as salt. It receives ρ1 from ExpsrIP and passes chall1 = ρ1 to A as
the response from H1

2.

22In our setting of interest, pk will be an invalid public key, i.e., there exists no secret key. Hence, despite
non-uniform dependency of A on pk, there is no trivial winning strategy. Indeed, we show it to be hard.
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– When A makes a query chall1∥ũ∥D∥d to H2
2,

1. P̃sr
IP checks if chall1 was previously returned to A as a response from H1

2; if not, P̃sr
IP

returns a randomly sampled chall2 to A and puts chall1 on the bad list.

2. Otherwise, P̃sr
IP recovers the partial transcript (x, (α1), (st1)) that received ρ1 =

chall1 as response, and it outputs (x, (α1, α2), (st1, st2)) to ExpsrIP, where α2 =
ũ∥D∥d and st2 = chall1 serves as salt. It receives ρ2 from ExpsrIP and returns
chall2 = ρ2 to A as the response from H2

2.

– When A makes a query chall2∥ã0∥ã1∥ã2∥ctr to H3
2,

1. P̃sr
IP checks if chall2 was previously returned to A as a response from H2

2; if not, P̃sr
IP

returns a randomly sampled chall3 to A and puts chall2 on the bad list.

2. Otherwise, P̃sr
IP recovers the partial transcript (x, (α1, α2), (st1, st2)) that received

ρ2 = chall2 as response, and it outputs

(x, (α1, α2, α3), (st1, st2, st3)), where α3 = ã0∥ã1∥ã2 and st3 = (chall2, ctr). It re-
ceives ρ3 ∈ {0, 1}λ from ExpsrIP returns chall3 = ρ3 to A as the response from H3

2.

At the end of the EUF-KO game, A terminates with msg, σ = ((ci)i∈[1..τ), ũ,d, ã1, ã2,

decomI , chall3, iv
pre, ctr). P̃sr

IP, upon receiving this, runs FAEST.Verify(msg, pk, σ; param, paramOWF)
to check if the signature σ is valid. As FAEST.Verify interacts again with the random or-
acles H0,H1,H

0
2,H

1
2,H

2
2,H

3
2,H3,H4 the algorithm P̃sr

IP will, as before, forward queries to
H0,H1,H

0
2,H3,H4 to the random oracles that it has access to. For queries to H1

2,H
2
2,H

3
2 it

does the following:

– When Verify makes the query µ∥com∥c1∥ . . . ∥cτ−1∥ivpre to H1
2, P̃sr

IP checks if µ was put
on the bad list during RO simulation. If yes, then P̃sr

IP aborts. Otherwise it outputs
(x, (α1), (st1)) to ExpsrIP, where α1 = com∥c1∥ . . . ∥cτ−1∥ivpre and st1 = µ serves as salt.
It receives ρ1 from ExpsrIP and passes chall1 = ρ1 to Verify as the response from H1

2.

– When Verify makes the query chall1∥ũ∥D∥d to H2
2, P̃sr

IP checks if chall1 was put on
the bad list during RO simulation. If yes, then P̃sr

IP aborts. Otherwise it outputs
(x, (α1, α2), (st1, st2)) to ExpsrIP, where α2 = ũ∥D∥d and st2 = chall1 serves as salt.

It receives ρ2 from ExpsrIP and returns chall2 = ρ2 to Verify as the response from H2
2.

– When Verify makes the query chall2∥ã0∥ã1∥ã2∥ctr to H3
2, P̃sr

IP checks if chall2 was put
on the bad list during RO simulation. If yes, then P̃sr

IP aborts. Otherwise it outputs
(x, (α1, α2, α3), (st1, st2, st3)), where α3 = ã0∥ã1∥ã2 and st3 = (chall2, ctr). It receives
ρ3 ∈ {0, 1}λ from ExpsrIP returns chall3 = ρ3 to Verify as the response from H3

2.

By construction, the outputs of the simulated ROs during Verify are consistent with those
of the simulated ROs during the EUF-KO game with A.

If FAEST.Verify rejects the signature, then P̃sr
IP aborts. Else, define α1 = (com∥c1∥ . . .

. . . ∥cτ−1∥ivpre), α2 = (ũ∥D∥d), α3 = (ã0∥ã1∥ã2) and α4 = (decomI). Then exit the while
loop in ExpsrIP and output (pk, (α1, α2, α3, α4), (µ, chall1, chall2∥ctr,⊥)) to the experiment.

Note that the outputs of the ROs H1
2,H

2
2,H

3
2 which P̃sr

IP simulates towards A are identi-
cally distributed to those of the outputs of the random oracles in the EUF-KO game. This
follows from Definition 9.27, which replaces the random oracles with outputs of random-
ness functions (that map each input to a uniformly random output, just like a random
oracle) and because RO outputs are chosen uniformly at random in the bad list case as
well. Thus, running A inside P̃sr

IP does not decrease the probability of A outputting a
valid forgery when compared with the EUF-KO security experiment. Also, note that P̃sr

IP

never aborts during the interaction with A that creates the forgery but potentially after
obtaining the forgery attempt from A.

Assume that P̃sr
IP outputs a value to the experiment ExpsrIP without aborting. By con-

struction, Verify must have accepted the signature generated by A. VIP runs the same
algorithms to verify the messages as FAEST.Verify and equally checks that the same wgrind
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bits of chall3 are 0. It also uses the exact same random challenges as Verify due to the
simulation of the RO responses by P̃sr

IP during Verify.
The differences in verification between both algorithms are the following:

VIP compares the output â0 of OWFVerify with the ã0 contained in the input message α3.
It also compares the output c̃om of VOLEReconstruct with the value com contained in
the input α1; while

Verify hashes the output ã0 of OWFVerify (and other messages) using H2
3 to generate chall

′
3,

which it compares with chall3. It also hashes the output com of VOLEReconstruct using
H1
2 to generate chall1.

All the inputs d,Q, ã1, ã2, pk; param, paramOWF to OWFVerify are identical in Verify,VIP
as both use the same challenges. Since Verify accepts, we have that the value ã0 which
P̃sr
IP generates from OWFVerify (using the challenges chall2, chall3) and outputs to the

experiment ExpsrIP is identical to the RO input to H2
3 that Verify makes to generate chall′3 =

chall3. As VIP uses the same challenges as Verify, the output â0 of OWFVerify in VIP must
therefore be identical to the ã0 it obtained as input. A similar argument can be made
for c̃om: there, all inputs except chall3 to VOLEReconstruct are fixed. As the signature
verifies, Verify used the challenge chall3 for verification, which made it output com that is
placed in α1. But since VIP uses the same inputs to VOLEReconstruct, its output c̃om will
be identical to com. We conclude that, if P̃sr

IP does not abort the experiment, then it will
win the experiment with VIP due to consistency of RO simulation with the outputs of the
random functions of the SRS experiment.
P̃sr
IP aborts the experiment if it previously marked an input to a RO as bad during

the simulation of ROs towards A, or if Verify aborts. Aborting in the latter case does
not decrease the success probability of P̃sr

IP so we only analyze the former. We invoke
Proposition 9.29: if an input query x = µ∥com∥c1∥ . . . ∥cτ−1∥ivpre to H1

2 matches a µ that
was added to the bad list, then µ was not output by H0

2 before (the same argument follows
identically for H2

2,H
3
2). If P̃sr

IP aborts due to the bad list event for H1
2 during Verify, then A

must have output a forgery tuple msg, σ (for a predefined pk) such that H0
2(pk∥msg) = µ

and where x = µ∥ . . . was queried to H1
2 before pk∥msg was queried to H0

2 (if it was
not queried by A during the EUF-KO game it will be queried by Verify). By modeling
H0
2, . . . ,H

3
2 as the random oracles in Proposition 9.29, the abort probability due to this

event can be at most (Q2,0 +Q2,1 +Q2,2 +Q2,3 + 4)2/22λ. Here we count the RO queries
made by A and the additional 4 that are possibly made during Verify. Since Y is set to
be the size of the minimum of the output spaces of H0

2,H
1
2,H

2
2 we have that Y = 22λ as

µ ∈ {0, 1}2·λ is the smallest response of these ROs.

Note that the constructed P̃sr
IP runs A once and forwards requests to random oracles.

In particular, if A is a PPT algorithm, then so is P̃sr
IP. P̃sr

IP also ignores potential preimage
and collision attacks on H4 that allow A to find signatures that are identical except for
differing ivpre. This is out of scope as we do not claim to achieve strong unforgeability.

9.5.3 From SRS IP to SRS IOP We now define a simplified notion of an IOP
(following [BBD+23a]), and will present a version of VIP that works as an IOP by idealizing
the BAVC. We then show a reduction from SRS IP to SRS IOP.

Definition 9.31 (Interactive Oracle Proof (IOP)). A (public-coin) interactive or-
acle proof (IOP) [BCS16, RRR16] for NP-relation R is a pair of PPT ITMs Π =
(P,V), which are defined as follows: The prover P throughout the protocol sends strings
mi = (mi, gi) in each round, where mi ∈ {0, 1}∗ is called message and gi ∈ {0, 1}∗ is
called oracle. The verifier V learns mi in round i, but not gi. It sends random challenges
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ρi ∈ Ci in round i in response. In a final round, the receiver learns all gi and outputs
b = VIOP(x, ((m1, . . . ,mk), (g1, . . . , gk), (ρ1, . . . , ρk−1))).

Definition 9.31 can easily be reconciled with state-restoration soundness. Namely, for
any IOP protocol we simply let the message αi be defined as αi := (mi, gi). Then the
resulting construction is still an IOP, as the state-restoration verifier, as defined in the
state-restoration soundness error Definition 9.28, is only ever called after all messages
α1, . . . , αk (and the salts st1, . . . , stk) have been fixed in the experiment. This fulfills the
requirements from Definition 9.31.

We now rewrite VIP as an IOP which we call VIOP. The algorithm is defined below:

VIOP(x, (α1, . . . , α4), (ρ1, . . . , ρ4))

1 : // Decode input

2 : Write x = (pk, param, paramOWF), α1 = ((c1∥ . . . ∥cτ−1∥ivpre)∥g1), α2 = (ũ∥D∥d),
α3 = (ã0∥ã1∥ã2)

3 : Set chall1 := ρ1, chall2 := ρ2, chall3 := ρ3

4 : Set (δ0, . . . , δλ−1) := chall3

5 : // Reconstruct VOLEs from IOP oracle

6 : Q← VOLEIOPReconstruct(g1, chall3, c1, . . . , cτ−1, ℓ̂; param, paramVOLE)

7 : if chall3[λ− wgrind, λ) ̸= 0 then return false

8 : // Apply the VOLE correction values and check consistency

9 : Q̃← VOLEHash(chall1,Q) ∈ {0, 1}(λ+B)×λ

10 : if D ̸= Q̃⊕ [δ0 · ũ · · · δλ−1 · ũ] return false

11 : // Compute AES consistency values

12 : â0 ← ZK.OWFVerify(d,Q|[0..ℓ+λ), chall2, chall3, ã1, ã2, pk; param, paramOWF)

13 : return true if â0 = ã0 else false

The main difference to VIP is that the commitment com contained in α1 is now replaced
by the IOP oracle string g1 that contains all the ui,Vi pairs corresponding to the commit-
ted seeds as supposedly generated by VOLECommit. Therefore, no opening decomI for the
commitments must be sent in α4. Moreover, this also means that we use a new algorithm
that reconstructs the VOLEs from the oracle string g1 instead of the commitment and
openings. We call this algorithm VOLEIOPReconstruct and it is defined in Figure 9.4.

VOLEIOPReconstruct differs from VOLEReconstruct as follows: Based on the BAVC
commitment, the original algorithm uses BAVC.Reconstruct to obtain the sdi,j , except
for those at the unopened positions defined in ∆0, . . . ,∆τ−1, and uses these, together
with ConvertToVOLE, to compute the matrix Q. This is an algorithm that can fail. In
comparison, VOLEIOPReconstruct simply takes ui,Vi as input and computes Q based
on the relation that ConvertToVOLE generates according to Proposition 5.2. Therefore,
VOLEIOPReconstruct will succeed in computing Q as long as it obtains a valid oracle
string g1 as input.

Lemma 9.32. Let R be the relation such that (x,w) ∈ R if x is a public key and w the
corresponding signing key for the FAEST signature scheme (with parameters param, paramOWF, paramVOLE

which will be left implicit). Let A be a probabilistic polynomial-time algorithm with access
to random oracles H0,H1,H4 which, on input an invalid public key x = pk, wins the SRS
soundness game defined in Definition 9.28 against VIP with probability at least p. A makes
at most Q0 queries to the random oracle H0 and Q1 to the random oracle H1.

Then there exists a 4-round probabilistic algorithm P̃IOP that wins the state-restoration
game in Definition 9.27 with probability at least

p−
((Q1 + 1)2

22λ
+ τQ0 · 2−λ

)
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VOLEIOPReconstruct(g1, chall3, c1, . . . , cτ−1, ℓ̂; param, paramVOLE)

Input: g1 ∈ {0, 1}ℓ̂×τ × {0, 1}ℓ̂×k0 × · · · × {0, 1}ℓ̂×kτ−1 , chall3 ∈ {0, 1}λ

Output: Q ∈ {0, 1}ℓ̂×λ

1 : I = (∆0, . . . ,∆τ−1)← DecodeAllChall3(chall3)

2 : if I = ⊥ then return ⊥
3 : else do

4 : Write (u0, . . . ,uτ−1,V0, . . . ,Vτ−1) := g1

5 : for i ∈ [0 . . . τ) do

6 : (δi,0, . . . , δi,ki)← BitDec(∆i, ki)

7 : Consider Vi column-wise as (vi,0, . . . ,vi,ki−1) := Vi

8 : for j ∈ [0 . . . ki) do

9 : qi,j := vi,j ⊕ δi,j · ui

10 : if i = 0 then

11 : Qi := [qi,0 · · ·qi,ki−1] ∈ Fℓ̂×ki
2 // stored in column major representation

12 : else

13 : Qi ← [qi,0 · · ·qi,ki−1] + [δi,0 · ci · · · δi,ki−1 · ci] ∈ Fℓ̂×ki
2

14 : Q := [Q0 · · ·Qτ−1 0ℓ̂,w] ∈ Fℓ̂×λ
2 // 0 is (ℓ̂× w) bits of zero-padding

15 : return Q

Fig. 9.4: VOLE reconstruction for the FAEST IOP.

against VIOP. For FAEST-EM , the success probability is

(Q1 + 1)2

22λ
+ AdvInjPRG2λ

B [Q4, L]

using the extractor from 9.15 that reprograms H4. If A makes β queries to the SRS game,
then P̃IOP makes β + 1 queries.

Note that we do not require P̃IOP to be polynomial-time and in fact it won’t be. This
is however not a problem, since x is not a valid instance anyways so the reduction cannot
trivially win the security game by finding a witness.

Proof of Lemma 9.32. We now construct the algorithm P̃IOP and prove its success prob-
ability. The intuitive idea is that P̃IOP will forward most of the messages from A directly
to the experiment, with the difference that it will extract all inputs from the BAVC com
and convert them into an oracle string.

Let A be the algorithm described in the statement, then P̃IOP works as follows: It
runs an instance of A towards which it simulates the SRS IP experiment as defined in
Figure 9.2. P̃IOP itself runs within an analogous SRS IOP experiment.

– For the hash function H0, P̃IOP simulates a random oracle using lazy sampling and
records all query-response pairs on the list L0 := (xi,H(xi)). Similarly, responses for
queries to H1 will be simulated with lazy sampling and stored on L1 by P̃IOP. P̃IOP

also simulates H4 using lazy sampling.

– Whenever A outputs (x, (α1), (st
′
1)), with α1 := (com, c1, . . . , cτ−1, iv

pre), P̃IOP runs
the extractor algorithm Ext(L0,L1, com, c1, . . . , cτ−1, iv

pre) from Lemma 9.15 to obtain
D = (u∗i ,V

∗
i )i∈[0,τ). P̃IOP sets g1 := D regardless of whether extraction was successful.

It then sets m1 := ((c1∥ . . . ∥cτ−1∥ivpre)∥g1), st1 := st′1∥com and outputs (x, (m1), (st1))
to the IOP SRS experiment and returns to A what the experiment returns.
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– Whenever A outputs (x, (α1, α2), (st
′
1, st2)) we compute m1, st1 as above and output

(x, (m1, (α2∥∅)), (st1, st2)) to the experiment and return to A what the experiment
returns.

– Similarly, whenever A outputs (x, (α1, α2, α3), (st
′
1, st2, st3)) we compute m1, st1 as

above and output (x, (m1, (α2∥∅), (α3∥∅)), (st1, st2, st3)) to the experiment and return
to A what the experiment returns.

– Similarly, whenever A outputs (x, (α1, α2, α3, α4), (st
′
1, st2, st3, st4)) we compute m1, st1

as above and output (x, (m1, (α2∥∅), (α3∥∅), (α4∥∅)), (st1, st2, st3, st4)) to the experi-
ment and return ∅ to A.

– Whenever A exits the loop and outputs (x, (α1, α2, α3, α4), (st
′
1, st2, st3, st4)), P̃IOP first

computes g1,m1, st1 as above. Then we first output (x, (m1, (α2∥∅), (α3∥∅)), (st1, st2, st3))
to the IOP SRS experiment to obtain ρ3.
Then, let ρ3 := chall3, α4 := decomI and α1 := (com, c1, . . . , cτ−1, iv

pre). Additionally,
compute

(ĉom, Q̂) := FAEST.VOLEReconstruct(decomI , chall3, c1, . . . , cτ−1, iv
pre; param).

If ĉom = ⊥ or ĉom ̸= com or g1 = ⊥ while ĉom = com then abort. In case no abort hap-
pens, exit the loop with the IOP SRS game and output (x, (m1, (α2∥∅), (α3∥∅), (α4∥∅)), (st1, st2, st3, st4))
to the experiment.
The distribution of ρi and random oracle responses that A obtains from P̃IOP is per-
fectly indistinguishable from those sent to A in the original SRS IP experiment. This
is achieved by making com part of st1 used to generate the random function re-
sponse ρ1, which is necessary as an attacker might use different com with identical
c1, . . . , cτ−1, iv

pre as part of some attack strategy. Thus, the behaviour of A towards
P̃IOP is perfectly indistinguishable from the behaviour it shows towards the regular
experiment, in particular with regards to generating accepting transcripts.
The constructed reduction aborts whenever VIP would trivially abort, namely if the
reconstructed ĉom is incorrect and the commitment therefore did not open correctly.
The reduction also aborts when the extractor is not successful and returns ⊥ but
VOLEReconstruct outputs Q. Otherwise, the behaviour of VIP and VIOP only dif-
fers when A outputs a commitment com that it can successfully open with decomI

but where Ext extracted the wrong (u∗i ,V
∗
i )i∈[0,τ). However, observe that P̃IOP plays

exactly the security game of Lemma 9.15 with A. There, the winning condition of
the attacker is either that the extracted (u∗i ,V

∗
i )i∈[0,τ) are inconsistent with the out-

put of VOLEReconstruct or that the extractor failed to generate (u∗i ,V
∗
i )i∈[0,τ) but

VOLEReconstruct returns Q. By Lemma 9.15 the probability of the attacker winning

the game is at most (Q1+1)2

22λ
+ τQ0 · 2−λ, as claimed above. Note that P̃IOP makes only

one extra query to the SRS game it interacts with in order to recover ρ3.

9.5.4 FAEST IOP is RBR-sound. Looking at the Chiesa–Yogev book [CY24];23

round-by-round (knowledge) implies state-restoration (knowledge) soundness with a t+ k
multiplicative loss, where k is the round complexity of the proof system, and t is the “move
budget” of the malicious state-restoration prover (we should think of t = O(2λ) because
it’s the number of times the malicious prover can restore the state of the verifier, i.e. query
the hash function). See [CY24], Theorems 31.2.1 and 31.3.1.

To handle the QROM as well, we define an augmented notion of round-by-round sound-
ness.

23https://github.com/hash-based-snargs-book/hash-based-snargs-book/blob/main/

snargs-book.pdf
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Definition 9.33 (Round-by-round soundness, based on [CCH+18]). For a IP Π
for a language L, let RBRState be a state function mapping an instance and a transcript
prefix to a Boolean value, with the following properties. For inst /∈ L,
1. RBRState(inst, ∅) = 0, where ∅ denotes the empty transcript prefix.
2. If for some instance inst and a transcript prefix trc that is empty (i=0) or ends in the

i-th challenge with RBRState(inst, trc) = 0, then for any prover message pmsgi+1 it
holds that

Pr
challi+1

[RBRState(inst, trc|pmsgi+1|challi+1) = 1] ≤ ϵ,

where challi+1 is sampled uniformly from the appropriate challenge space, and the
round-by-round soundness error ε depends on the security parameter only.

3. For any complete transcript trc, if RBRState(inst, trc) = 0 then the verifier rejects.

We say Π has round-by-round (RBR) soundness if for all no-instances x /∈ L and all
transcripts trc, ϵ is upper bounded by a negligible function of the security parameter.

We say that a challenge challi+1 is isolated if given RBRState(inst, trc) = 0, the event
RBRState(inst, trc|pmsgi+1|challi+1) = 1 depends on challi+1 only.

We say Π is RBR-sound with passive prefix up to challi if for a partial transcript trc
ending in challj−1, given RBRState(inst, trc) = 0, the event RBRState(inst, trc|pmsgi+1|challi+1) =
1 is independent of the prefix of trc ending in challm for m = min(i, j − 1).

Lemma 9.34. Let R be the relation such that (x,w) ∈ R if x is a public key and w the
corresponding signing key for the FAEST signature scheme (with parameters param, paramOWF, paramVOLE

which will be left implicit).
Let ℓ̂ ≤ 213, ℓ′ ≤ 213, εv = 2−λ−B(1 + 2B−50), εzk = 2−λ(1 + 2−38) and 2 log2(τ) ≤

min{B, 50}. The FAEST IOP with verifier VIOP has round-by-round soundness with sound-
ness error 3/2λ, where x is not a valid instance of R

Proof of Lemma 9.34. For the first challenge we can directly bound the probability by
Lemma 4.10, for the second by Lemma 4.11 and for the last by Lemma 6.3.

The FAEST IOP is a 3-round IOP; in the first round, PIOP sends

m1 = (c1∥ . . . ∥cτ−1∥ivpre)∥g1 = (ui,Vi)i.

From this message, RBRState can reconstruct u,V and apply c1, . . . , cτ−1 to correct
all “small” VOLE instances ui,Vi to the same secret as u0. If the secret of any small
VOLE instances differs from u0 then the verifier should later reject.

After this, VIOP responds with chall1 = ρ1. We now analyze how likely chall1 will break
soundness in this round by flipping RBRState from 0 to 1. This means that the hashes
indicate that the secret committed in each VOLE instance is identical, when in fact they
are different. We import following claim from [BBD+23b, Theorem 2].

Claim 1. For all (u∗i ,V
∗
i )i∈[0..τ), C = [c1 · · · cτ−1] ∈ Fℓ̂×(τ−1)

2 , the probability that the
consistency check fails for independently sampled VOLEHash challenges chall1 is at most
εv
(
τ
2

)
.

Proof. See proof of [BBD+23b, Theorem 2].

Upon receiving chall1, the prover responds with m2 = (ũ∥D∥d). Using d, we can recon-
struct the witness w and run ZK.OWFProve inside RBRState (i.e. apply the computation
to the committed witness). The commitments that are opened are those collected in ⟨z⟩3λ
where z is supposedly 0. If any value committed in the commitments is non-zero then the
verifier should later abort.

After the second round, VIOP responds with chall2 = ρ2. We now analyze how likely
non-zero commitments are hashed to a commitment of zero, thus breaking soundness and
flipping RBRState from 0 to 1.
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Claim 2 (ZK Hash check failure). Let h = ZKHash(chall2, (x0, x1)) = r⊤x0 + x1. Let
e ∈ F2λ be the degree 3 coefficients of ⟨z⟩3λ.

Define the bad event (“ZK Hash check fails”) as e ̸= 0 but r · e = 0, i.e. the event
where ZK Hash corrects an error into a valid VOLE correlation. The probability that the
ZK Hash check fails for an independent chosen hash chall2 is at most εzk.

Proof. This follows from Lemma 4.11 showing the εzk-universality of ZKHash.

In the third round, PIOP sends

α3 = (ã0∥ã1∥ã2).

These define a degree 2 polynomial that is supposedly an opening of the ZKHash of ⟨z⟩3λ
as computed in OWFProve. Assume that the output of ZKHash is a degree-3 polynomial.
To this, VIOP responds with chall3 = ρ3 (which is the random sampling of the QuickSilver
challenge ∆). By Lemma 6.3 the soundness error of this step is exactly 3/2λ. Again,
RBRState flips from 0 to 1 for the 3 challenges which breaks soundness.

Since εzk = 2−λ(1 + 2−38) < 2−λ+1, we have that 3/2λ is always larger than the
soundness error of the last round is always larger than the soundness error of the second
round. Moreover, we have that

(
τ
2

)
< τ2, so as long as 2 log2(τ) ≤ min{B, 50} we also have

that (
τ

2

)
2−λ−B(1 + 2B−50) < 22 log2(τ)2−λ−B(1 + 2B−50) < 2 · 2−λ

and the soundness error of the first round is always smaller than the soundness error of
the last round.

Finally, let us gather the chain from SRS security to RBR security in one corollary.

Corollary 9.35. Consider the setting of Lemma 9.30 with invalid public key, i.e., pk /∈
im(KeyGen). In particular, A makes at most Q0, Q1, Q2,0, Q2,1, Q2,2, Q2,3, Q4 queries to

each of the random oracles H0,H1,H
0
2,H

1
2,H

2
2,H

3
2,H4 respectively. Suppose that ℓ̂ ≤ 213, ℓ′ ≤

213 and 2 log2(τ) ≤ min{B, 50}. Then we have

p ≤(Q2,0 +Q2,1 +Q2,1 +Q2,3 + 4)2/22·λ

+
(Q1 + 1)2

22λ
+ AdvLeafCollLeafCommit

+ (Q2,1 +Q2,1 +Q2,3 + 9) · 3/2λ

where OWF is the OWF (or more precisely, PRG) defined by paramOWF, and

– AdvLeafCollLeafCommit
B′ ≤ Q0 · 22λ · εuhash ≤ Q0 · 2−λ for FAEST.

– AdvLeafCollLeafCommit
B′ ≤ AdvInjPRG2λ

B [Q4, L] for FAEST-EM.

Proof. First, we apply Lemma 9.30 to turn A into an SRS adversary A1 with (Q2,1+Q2,1+
Q2,3+4) as an interactive proof (IP) system; success is reduced by at most (Q2,0+Q2,1+
Q2,1 + Q2,3 + 4)2/22·λ. Secondly, we apply Lemma 9.32 to turn the SRS IP adversary
into an SRS IOP adversary A2 which requires one additional query to the SRS IOP

game; success is reduced by at most (Q1+1)2

22λ
+AdvLeafCollLeafCommit. Finally, we use [CY24,

Theorem 31.2.1] to reduce the success of adversary A2 against SRS which makes at most
(Q2,1 +Q2,1 +Q2,3 + 5) queries, to RBR soundness. From Lemma 9.34 and the assumed

bound on ℓ̂, ℓ′, τ, B, we know that εrbrIOP ≤ 3/2λ. Moreover, the IOP has 4 moves, and
therefore we can bound success of A2 by

(Q2,1 +Q2,1 +Q2,3 + 9) · 3/2λ

This yields the claim.
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9.6 EUF-CMA

Theorem 9.36 (FAEST is EUF-CMA secure). Let H0,H1,H
1
2,H

2
2, H

3
2 and H4 be modeled

as random oracles and H3 be a PRF. Then for any PPT adversary A which makes Qsig

queries to Osig and Q0, Q1, Q2,1, Q2,2 and Q2,3 queries to H0,H1,H
1
2, H

2
2 and H3

2 respectively,

AdvEUFCMAFAEST
A [Qsig] ≤ 2 · AdvEUFKOFAEST

+ 2 ·Qsig ·
(
AdvPRFH3 + ⌈log(L)⌉ · AdvPRPPRG2λ [1] + AdvPRPLeafCommit[1]

)
+ 2 ·Qsig ·

(2Q1 +Q2,1

22λ
+

Qsig +Q2,2

25λ+64
+

Qsig +Q2,3

23λ+64

)
For FAEST-EM, the reduction and bound holds.

Proof. Let A be an arbitrary adversary against the EUF-CMA security of FAEST. We
define a sequence of games which begins with A playing the real EUF-CMA game, where
the signing oracle Osig uses the real secret key sk to compute signatures, and ends with
Osig simulating signatures without using sk.

We then define the reduction B playing in the EUF-KO game to play the role of Osig

for A in the final game of the sequence and to output the forgery that A outputs. From
this definition, it follows that B is successful in the EUF-KO game whenever A is in the
final game.

The sequence of games is defined as follows:

G1: A plays the EUF-CMA game with a real signature oracle. Clearly, we have:

Pr[G1 = 1] = AdvEUFCMAFAEST
A [Qsig]. (6)

G2: Osig samples r ∈ {0, 1}λ and ivpre ∈ {0, 1}128 at random instead of computing
H3(sk∥µ∥ρ).
The difference between this game and the previous one reduces to the PRF security of
H3 with secret key ρ. Since we need to change (r, iv) in every query to Osig, we run a
hybrid argument and obtain:

Pr[G1] ≤ Pr[G2] +Qsig · AdvPRFH3
APRF

. (7)

G3: Osig samples chall1 ∈ {0, 1}5λ+64 at random in every query. When µ∥com∥c1∥ . . . ∥cτ−1∥iv
is queried to H1

2, game G3 abort if this query to H1
2 has already been made during the

game; otherwise program H1
2 to output chall1 on this input.

We argue indistinguishability by reduction to unpredictability as stated in Lemma 9.21.
We use a hybrid argument, where G3,i implements the abort only for the first i queries
to Osig. Clearly, G3,0 = G2 and G3,Qsig

= G3. Moreover, G3,i−1 and G3,i only differ in
the i-th Osig query, and only if A predicted the query µ∥com∥c1∥ . . . ∥cτ−1∥iv. The
i-th reduction Aunpred,i to unpredictability plays unpredictability game in Lemma 9.21
such that it emulates G3,i, except that for the i-th Osig-query, it outputs its current
state and the list L2,1 of queries made to H2,1, receives (com, c1, . . . , cτ−1) from the
unpredictability experiment (instead of running VOLECommit), and then continues

from there. By construction, G3,i−1 = 1 ⇐⇒ ExpUnpred
VOLECommit,ℓ̂,param,paramVOLE
0,Aunpred

= 1

and G3,i = 1 ⇐⇒ ExpUnpred
VOLECommit,ℓ̂,param,paramVOLE
1,Aunpred,i

. Thus, from Lemma 9.21 and

a hybrid argument we get

Pr[G3 = 1] ≤eQsig·(4⌈log(L)⌉β2+16β2)/2128 ·
(
Pr[G1 = 1]

+Qsig ·
(
⌈log(L)⌉ · AdvPRPPRG2λ

B [1] + AdvPRPLeafCommit[1] +
(2Q1 +Q2,1)

2−2λ

))
(8)
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G4: Osig samples chall2 ∈ {0, 1}3λ+64 at random in every query. When chall1∥ũ∥hV ∥d
is queried to H2

2, abort if this query to H2
2 has already been made during the game;

otherwise program H2
2 to output chall2 on this input.

G4 can only abort if a query starting with chall1 has been made to H2
2; since chall1 is

fresh because of G3, by a hybrid argument, we get:

Pr[G3 = 1] ≤ Pr[G4 = 1] +Qsig ·
Qsig +Q2,2

25λ+64
.

G5: Osig samples chall3 ∈ {0, 1}λ at random in every query in every iteration of FAEST.Sign
(in line (20)), until eventually the loop ends with chall3[λ − wgrind) ̸= 0wgrind and I =
DecodeChall3(chall3; param) such that decomI ̸= ⊥. When chall2∥ã∥b̃∥ctr is queried
to H3

2, abort if this query to H3
2 has already been made during the game; otherwise

program H3
2 to output chall3 on this input.

G5 can only abort if a query starting with chall2 has been previously made to H3
2; since

chall2 is fresh because of G4, by a hybrid argument, we get:

Pr[G4 = 1] ≤ Pr[G5 = 1] +Qsig ·
Qsig +Q2,3

23λ+64
.

Observe that the relevant elements of this game are now compatible with the hiding
experiment for VOLECommit described in Lemma 9.20.

G6: Osig replaces the call to VOLECommit by uniformly sampling u ∈ Fℓ̂
2 and (ci)i∈[1..τ)

and computing V ∈ Fℓ̂×λ
2 such that the VOLE relation holds with the ∆ and qi values

that result from chall3; it does so in every signature query.
In the reduction, we sample chall3 as in game G5, except that we replace the successful
challenge chall3 (where chall3[λ− wgrind) ̸= 0wgrind and decomI ̸= ⊥) with the challenge
of the hiding game. This game perfectly corresponds to game G5 when b = 0, i.e. the
real VOLECommit is used, or G6 when b = 1. Too see this here, note that decomI ̸= ⊥
is derivable given only I (Remark 9.19), and thus embedding chall3 obtained from the
hiding game for the successful counter ctr poses no problem as decomI is not needed
to check if chall3 satisfies chall3[λ − wgrind) ̸= 0wgrind and decomI ̸= ⊥. Moreover, since
game G5 establishes that programming works (or the game aborts), we can sample all
chall3 ahead of time. Hence, the non-adaptive nature of hiding as in Lemma 9.20 also
poses no problem, and conceptual changes suffice to facilitate the reduction.
By Lemma 9.20 and a hybrid argument, the change in success is therefore bounded as

Pr[G5 = 1] ≤ eQsigτ
(
4⌈log(L)⌉β2+16β2N2

0+(⌈ℓ̂/128⌉)2
)
/2128 ·

(
Pr[G6 = 1]+

Qsigτ ·
(
⌈log(L)⌉ · AdvPRPPRG2λ

B1 [1] + AdvPRGLeafCommit
B2 [N0] + AdvPRP

PRGℓ̂
B3 [1]

))
After this change, the distribution of (u,V) is uniform (modulo the VOLE relation)
and independent of the VOLE commitments (ci)i∈[1..τ).

G7: In every query, Osig samples ũ and Ṽ at random (modulo the VOLE relation with Q̃
and ∆) instead of computing VOLEHash during the signing. It then adjusts the last
λ + B elements of u and rows of V to match ũ and Ṽ when VOLEHash is applied
under challenge chall1 to u,V.
Since the last λ+ B elements of u and rows of V are uniformly random (modulo the
VOLE relation) because of G6, and VOLEHash is Fℓ+λ

2 -hiding by Lemma 4.10, this
game is perfectly indistinguishable from the previous one.

G8: In every query, Osig samples ã0, ã1, ã2 at random (modulo the VOLE relation) instead
of computing ZKHash. It then computes OWFProve, but adjusts the u,V in rows [ℓ..ℓ+
2λ) to match ã0, ã1, ã2 when ZKHash is applied under challenge chall2 to a0∥u∗0,a1∥v∗0+
u∗1,a2∥v∗1.
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Since the respective rows of u and V are uniformly random (modulo the VOLE re-
lation) because of G6, and ZKHash is Fℓ

2λ
-hiding by Lemma 4.11, the distribution of

(ã0, ã1, ã2) is unchanged and this game is perfectly indistinguishable from the previous
one.

G9: Now that the computation of ã0, ã1, ã2 is independent of w, Osig will sample d uni-
formly at random in every query instead of computing d := w + u[0..ℓ).
This does not change the distribution of d because u is uniform since G6 and the first ℓ
elements were not used in games G7 and G8 to produce their outputs, hence this game
is perfectly indistinguishable from the previous one.

In G9, we see that the distribution of σ produced by Osig no longer depends on the secret
key sk and the success probability of A. Taking together the intermediate advantages, we
arrive at

Pr[G0 = 1] ≤ ρ ·

(
Pr[G9 = 1]

+Qsig · AdvPRFH3

+Qsig ·
(
⌈log(L)⌉ · AdvPRPPRG2λ [1] + AdvPRPLeafCommit[1] +

2Q1 +Q2,1

22λ

)
+Qsig ·

(Qsig +Q2,2

25λ+64
+

Qsig +Q2,3

23λ+64

))
= ρ · Pr[G9 = 1]

+ ρ ·Qsig ·
(
AdvPRFH3 + ⌈log(L)⌉ · AdvPRPPRG2λ [1] + AdvPRPLeafCommit[1]

)
+ ρ ·Qsig ·

(2Q1 +Q2,1

22λ
+

Qsig +Q2,2

25λ+64
+

Qsig +Q2,3

23λ+64

)
where

ρ = eQsig·(4⌈log(L)⌉β2+16β2)/2128+Qsigτ
(
4⌈log(L)⌉β2+16β2N2

0+(⌈ℓ̂/128⌉)2
)
/2128

is bounded by 2 for all proposed parameter sets. Observe also, that in the reduction up
until now, there are no differences for FAEST or FAEST-EM.

At this point, we reduce to EUF-KO security. We note here, that there is a formal
compositional problem: The EUF-CMA reduction programs random oracles, which in-
terferes with the EUF-KO claims. However, these problems are of formal nature. If we
would instead include the EUF-KO proof here, then the advantage terms due to collisions,
pre-image attacks, or guesses of random oracle outputs would be the same.

9.7 QROM proof

We present a proof of EUF-CMA security in the quantum-accessible random oracle model.
The proof follows the following strategy.

The strategy for reducing breaking EUF-CMA to EUF-KO (Theorem 9.42) is identical to
that in the ROM proof. Whenever a random oracle needs to be reprogrammed to a fresh,
random output at a location that has min-entropy given the adversary’s view, we use
the adaptive reprogramming lemma (also called “resampling lemma”) [?]. When replacing
chall1 by a random value, however, the corresponding input to H1 is only computationally
unpredictable for the adversary. To exploit this computational unpredictability in a clean
but tight way, we prove the unpredictability of the BAVC commitments with “quantum
guesses” (see Lemma 9.41).

For proving EUF-KO security, we employ a lossy key argument to reduce from soundness
of FAEST as a non-interactive argument. This step is identical to the ROM reduction.
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We would then like to follow the same strategy as in the ROM reduction: switch to
an interactive version of FAEST and then exploit round-by-round (RBR) soundness. It is,
however, unclear how to perform these two steps separately in the QROM: The equivalence
of soundness of the Fiat-Shamir (FS) transformation of a given interactive proof system
(IP) and its state restoration soundness seems to be unlikely in this setting, and the
natural IP underlying FAEST does not have RBR soundness without idealizing the BAVC
commitment. Instead we go one step further and formulate FAEST as a (slightly non-
standard) FS transformation of an IP with more rounds, interpreting every random oracle
call, including the ones inside BAVC.Commit in FAEST as a FS challenge generation. This
way, we get to a RBR-sound IP in one step, as the commitments in the this IP are
the statistically-binding leaf commitments (with the tree commitment that comes on top
interpreted as rounds of interaction). This facilitates a QROM reduction via compressed-
oracle-based search bound techniques [CFHL21, AHJ+23] (Lemma 9.40).

9.7.1 FAEST as non-standard Fiat Shamir transformation of 7-challenge IP (6-
challenge for FAEST-EM). We begin by formulating FAEST as a slightly non-standard
Fiat-Shamir transformation of a 7-challenge (6-challenge for FAEST-EM) interactive proof
system, FAEST-IP+. The 8 (7) prover messages of this protocol are

1. pmsg−3 = ivpre

2. pmsg−2 = ι, the empty string
3. pmsg−1 = com0,0∥com0,1∥ . . . com0,N0∥com1,0∥ . . . comτ−1,Nτ−1 as produced by FAEST.Sign

in subroutine VOLECommit in subrouting BAVC.Commit
4. pmsg0 = ι, the empty string
5. pmsg1 is the argument of H1

2 in FAEST.Sign with µ,com and iv removed
6. pmsg2 is the argument of H2

2 in FAEST.Sign with chall1 removed
7. pmsg3 is the argument of H3

2 in FAEST.Sign with chall2 removed
8. pmsg4 is the signature, with chall3 removed.

For FAEST-EM, pmsg−2 is omitted. For clarity, we keep the numbering of rounds in this
case, meaning that the prover messages are pmsg−3, pmsg−1, . . . and similar for the chal-
lenges. The challenges are

1. chall−3 = iv
2. chall−2 = (uhash0, . . . , uhashτ−1)
3. chall−1 = h0∥ . . . ∥hτ
4. chall0 = com
5. chall1
6. chall2
7. chall3

For FAEST-EM, chall−2 is omitted. The honest prover computes the prover messages as
FAEST.Sign would compute the corresponding quantities, except: i) it samples r, ivpre at
random, ii) there is only one attempt to obtain a chall3 with a suffix of wgrind zeroes (denote
the variant of FAEST where Line 4 of FAEST.Sign is replaced by random sampling, and
where only one, say random, value of ctr is attempted, by FAESTr (FAEST-EMr)), and
iii) it uses the challenges in place of hash values where FAEST.Sign calls H0,H1,H4 or any
of the Hi

2, i = 1, 2, 3. Note that as the change from FAEST to FAESTr leaves verification
unchanged and thus does not affect soundness.

The FAEST-IP+verifier runs FAEST.Verify, omitting Lines 2,3,10 and 15, and replacing
Lines 18 and 19. Instead of Lines 18 and 19, the verifier compares the result ã′0 of Line
17 with the value ã0 from pmsg3, and rejects if they differ, accepts otherwise. In case
of FAEST-EM, the FAEST-IP+ verifier additionally rejects if any of the comi,j have more
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than one pre-image. This verifier is not efficient, which is not a problem as we are only
interested in soundness of the IP.

Note that FAEST-IP+ is in the plain model: We replaced the call to H3 by random
sampling and all other hash calls by interaction.

We now describe the Fiat Shamir transformation we apply to FAEST-IP+ to get back
to a variant of FAEST (with random ivpre, r and with an equivalent verification). For
readability, we omit the output length parameter of the hash functions. The challenges
are derived as follows.

1. chall−3 = H4(pmsg−3)
2. chall−2 = H0(chall−3)
3. chall−1 = h0∥ . . . ∥hτ with hi = H1(comi,0∥comi,1∥ . . . comi,Ni)
4. chall0 := H1(chall−1∥pmsg0)
5. chall1 := H1

2(H
0
2 (pk∥msg)∥com∥pmsg1∥ivpre)

6. chall2 := H2
2(chall1∥pmsg2)

7. chall3 := H3
2(chall2∥pmsg3)

There are three main ways in which this transformation deviates from all standard vari-
ants of Fiat Shamir: i) chall−1 is derived without hashing the previous challenge. The
commitment comi,j is, however, an injective function of uhashi. ii) The function for deriv-
ing chall−1 is not a random oracle. The two-step computation of com is, however, only for
efficiency (to allow parallel hashing), so it should be plausible that this is not a problem,
and will be taken into account in the proof. iii) The instance (the public key) is pre-hashed
and only included in the hash argument for deriving chall1, the 5th challenge.

The standard Fiat Shamir prover (outputting all pmsgi) and verifier (recomputing all
challi) with challenges derived as described above yield a variant FAESTelc

r (“explicit leaf
commitment”) of FAESTr (FAEST-EM

elc
r of FAEST-EMr) that is equivalent from a security

point of view, and differs only in efficiency (see Lemma 9.40)

9.7.2 RBR soundness of FAEST-IP+. We prove RBR soundness for the expanded
IP.

Lemma 9.37. FAEST-IP+ has RBR soundness with passive prefix up to chall−3, where
challenge chall−2 is isolated, with RBR soundness errors

ε−3 = ε−1 = ε0 =0 (9)

ε−2 =τ · 2−λ (10)

ε1 = ε2 = ε3 = ε :=3 · 2−λ (11)

Proof. Define the state function RBRState to output 1 if one of the values uhashi in chall−2
defines a non-injective LeafHash. If that is not the case, let g1 = (ui,Vi)i be the VOLEs
defined by the unique preimages of the comi,j . If none of the values uhashi in chall−2 defines
a non-injective LeafHash, RBRState computes its output using the RBR state function from
Lemma 9.34 on input (c1∥ . . . ∥cτ−1∥ivpre)∥g1. Now the expression for ε−2 follows by the
analysis in the proof of Lemma 9.15, and the expression for ε1, ε2, ε3 is due to Lemma 9.34.
The passive prefix and isolation statements follow by construction of RBRState.

For FAEST-EM, it suffices to additionally observe that we defined the verifier to reject
whenever the extraction of the comi,j yields multiple pre-images.

9.7.3 FAESTelc
r soundness to FAEST-IP+ RBR soundness. We recall a lemma for

QROM query bounds from [AHJ+23]. In the following, we identify D ∈ (Y ∪ {⊥})X with
a partial function from X to Y, where D(x) = ⊥ indicates that D(x) is undefined. We
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write D[x 7→ u] for the partial function that maps x to u and x′ to D(x′) for all x′ ̸= x.
We say that a predicate P on (Y ∪ {⊥})X has qP-local witnesses if for all D ∈ (Y ∪ {⊥})X
with P(D) = 1 there exists a tuple z = (x1, . . . , xi) ∈ X i for i ≤ qP such that for all
D′ ∈ (Y ∪ {⊥})X that agree with D on z, i.e. D′(xj) = D(xj) for j = 1, . . . , i, it holds
that P(D′) = 1. We denote the validity of a witness z for a predicate P and a (partial)
function D as ⟨z,P, D⟩. Furthermore we define |D| = |{x ∈ X |D(x) ̸= ⊥}.

Lemma 9.38 (Special case of Lemma 1 in [AHJ+23]). Let H : X → Y be a random
oracle and let P : (Y ∪ {⊥})X → {0, 1} be a predicate with qP-local witnesses. Let further
AH be a QROM algorithm making at most q quantum queries to H and outputs a candidate
witness z for P. Then

√
Pr

z←AH
[⟨z,P,H⟩] ≤

q+qP∑
k=1

√√√√10 max
x,D:
|D|≤k
¬P(D)

Pr
u←Y

[P(D[x 7→ u])]. (12)

Here the maximum is taken over x ∈ X and D ∈ (Y ∪ {⊥})X .

We are now ready to prove the soundness of FAEST based on the round-by-round
soundness of FAEST-IP+. For signature schemes, we consider a notion of soundness where
an adversary presented with an invalid public key cannot produce a valid message-signature
pair, except with the soundness advantage AdvSnd.

Lemma 9.39. For any static QROM adversary AH0,H1,H0
2,H

1
2,H

2
2,H

3
2,H4 against FAESTelc

r =
FS[FAEST-IP+] that makes a total of Q0, Q1, Q2,0, Q2,1, Q2,2, Q2,3, Q4 quantum queries to
its oracles H0,H1,H

0
2,H

1
2,H

2
2,H

3
2,H4, respectively,

AdvSnd
FAESTelc

r
A ≤ 10 ·Q3 · 2−2λ + 10 ·Q2 · τ · 2−λ.

For FAEST-EM, the advantage is instead bounded as

AdvSnd
FAEST-EMelc

r
A ≤ 10(τ + 1) ·Q3 · 2−2λ + 30 ·Q2 · 2−λ.

Here,
Q = Q0 +Q1 +Q2,0 +Q2,1 +Q2,2 +Q2,3 +Q4 + 2τ + 12.

Proof. We instantiate the random oracles via domain separation of a random oracle H with
sufficiently large output length for this proof, by setting Hj

i = H(i∥j∥·) truncated to the cor-
rect output length, with appropriate encoding of the number prefixes, where H0

i := Hi for
i ∈ {0, 1, 3, 4}. For ease of notation, we define Ĥi such that Ĥi is used to derive challi. In par-
ticular, Ĥ−1 is the function used to map com0,0∥com0,1∥ . . . com0,N0∥com1,0∥ . . . comτ−1,Nτ−1

to h0∥ . . . ∥hτ−1. Let TΠ be the set of transcripts for Π and Rj
i the range of Hj

i , R̂i the

range of Ĥi, M
j
i =

∣∣∣Rj
i

∣∣∣ and M̂i = |Ri|. To use Lemma 9.38, we define the following

predicate on pairs of partial transcripts trc = (msg, µ, pmsg−3, chall−3, . . . , challi),

predpk,H(trc,msg) =RBRState(pk, trc)

∧ ¬RBRState(pk, trci−1)

∧
(
∀j ∈ [−3 : i] \ {−1, 1} : challj = Ĥj(challj−1∥pmsgj)

)
∧
(
i < −1 ∨ chall−1 = Ĥ−1(pmsg−1)

)
∧
(
i < 1 ∨ chall1 = Ĥ1(µ∥chall0∥pmsg1)

)
∧ H0

2(pk,msg) = µ
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Here we have defined the truncation trci−1 = (msg, µ, pmsg1, chall1, . . . , challi−1). If predpk,H(trc, µ),

we say (trc, µ) is bad for H. We further define a predicate P : (Y ∪ {⊥})X → {0, 1} by
P(D) :⇔ there exists bad (trc, µ) for D. P has (τ+4)-local witnesses. I particular if (trc, µ)
is bad for D and trc ends in chall−3 or chall−2, then a 1-local witness exists as chall−2 is
isolated and chall−3 has RBR soundness error 0 so trc cannot actually end in chall−2 and
fulfil pred. If trc ends in challi for i ∈ [−1 : 3], the list of random oracle inputs in the
domains of H1, H

0
2 and Ĥi, i = 1, 2, 3, queried when evaluating predpk,H(trc,msg) is a wit-

ness if predpk,H(trc, µ). The at most τ + 5 inputs include the τ inputs to H1 for deriving

chall−1. We call i the length of the witness. In the following we denote by Dj
i and D̂i the

partial functions obtained in the same way as Hj
i and Ĥi are obtained from H. We also

define the collision predicate PC by setting PC(D) iff there exist inputs x, x′ in the domain
of the same hash function H1 or H i

2, i = 0, 1, 2, 3 such that D(x) = D(x′) ̸= ⊥. Note
that this prevents collisions for chall−1 as well as Ĥ0 = H1 is used for deriving chall−1.
The collision predicate clearly has (τ + 5)-local witnesses (it has 2-local witnesses). We
construct algorithm BH as follows. BH runs (msg, π)← AH and recomputes the challenges.
Denote the completed transcript by trc. If there exists i such that RBRState(pk, trci) and
¬RBRState(pk, trci−1), output the predicate witness z, else, output ⊥. By RBR soundness
(Lemma 9.37) we have

Pr
π←AH(pk)

[verifier accepts π] ≤ Pr
z←BH

[⟨z,P,H⟩]

≤ Pr
z←BH

[⟨z,P ∨ PC ,H⟩] (13)

We now aim to bound the quantity

max
x,D:
|D|≤k
¬P′(D)

Pr
u←Y

[P′(D[x 7→ u])]

for P′ = P ∨ PC . Here, D is a partial function with the same domain and range as H. We
denote by |Di| the number of different inputs x in the domain of Ĥi such that D(x) ̸= ⊥.
We distinguish different cases depending on which domain x is from.

1. x is in the domain of Ĥ−3. As the RBR soundness error for this round is 0 and RBR
soundness holds with passive prefix up to chall−2, we have

Pr
u←Y

[P′(D[x 7→ u])] ≤ 0

2. x is in the domain of Ĥ−2. There are two ways to fulfill P′(D[x 7→ u]), i) if a col-
lision occurs, i.e., ∃x′ : D̂−2(x) = D̂−2(x

′) ̸= ⊥, or ii) if a u is chosen such that
RBRState(pk, τ |x|u) = 1. By Lemma 9.37, chall−2 is isolated, thus we have

Pr
u←Y

[P′(D[x 7→ u])] ≤ |D̂−2|
M̂−2

+ τ · 2−λ =: δ̂−2

using the RBR soundness error given by Lemma 9.37.
3. x is in the domain of H1. For D with ¬P′(D), there are 2 ways to fulfil P′(D[x 7→ u]).

The first one is if a new collision is found, i.e. ∃x′ : D0
1(x) = D0

1(x
′) ̸= ⊥. This happens

with probability at most k
M0

1
. The second one is that there exists x′ = h0∥ . . . ∥hτ−1 in

the domain of H1 such that D0
1(x
′) ̸= ⊥ and there exists i ∈ [0, τ) such that u = hi,

or x′ = µ∥com∥pmsg0 in the domain of Ĥ1 such that u = com. This happens with
probability at most τk

M1
+ k

M1
2
. In summary, we get

Pr
u←Y

[P′(D[x 7→ u])] ≤ (τ + 1)|D1|
M1

+
D̂1

M̂1

=: δ1.
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4. x is in the domain of H0
2 . The only way to fulfil P′(D[x 7→ u]) in this case is by forming

a collision, so

Pr
u←Y

[P′(D[x 7→ u])] ≤ |D
0
2|

M̂i

=: δ2,0

5. x is in the domain of Ĥi for i = 1, 2. For D with ¬P′(D), there are 3 ways to fulfil
P′(D[x 7→ u]). The first option is that there exists x′ in the domain of Ĥi, x

′ ̸= x such
that D(x′) = u (i.e. a new collision has formed). The second option is that a new
witness of length i′ > i for P is completed. In this case, there exists pmsgi+1 such

that D̂i+1(u∥pmsgi+1) ̸= ⊥. The third option is that a new witness of length i for P
is completed. In this case, it is necessary that there exists a partial witness (which is
unique by ¬PC(D))

z =
(
0∥0∥iv, 1∥1∥com0,0∥ . . . ∥com0,N0 , . . . , 1∥1∥comτ−1,0∥ . . . ∥comτ−1,Nτ−1 ,

1∥1∥chall−1, 2∥1∥µ∥chall0|pmsg1

)
if i = 2, and a partial witness of the same form except without the last entry if i = 1,
with the following properties. Let challi−1 = D̂i−1(zlast), where zlast is the last entry
of z, let trc be the transcript obtained from z, and let trci−2 be its truncation to the
second-to-last challenge. Then

(a) z is consistent, i.e., recomputing the challi that appear in the entries of z using D
succeeds

(b) RBRState(pk, trci−2) = 0

(c) there exists pmsgi such that x = 2∥i∥challi−1∥pmsgi and
RBRState(pk, (pmsg1, chall1, . . . , pmsgi, u)) = 1.

In summary, we have

Pr
u←Y

[P′(D[x 7→ u])] ≤ |D̂i|+ |D̂i+1|
M̂i

+ ε =: δ̂i,

where the term |D̂i|+|D̂i+1|
M̂i

is from the first and second option, we have used RBR

soundness from Lemma 9.37 to bound the probability

Pr
u←Y

[RBRState(pk, (pmsg1, chall1, . . . , pmsgi, u))] ≤ ε

in the third option, and ε is defined in Lemma 9.37.

6. x is in the domain of Ĥ3. The analysis here is identical to item 4., except that Ĥ3 is
not included in the collision predicate, and chall3 is the last challenge, so only option
3 exists for Ĥ3. We thus get

Pr
u←Y

[P′(D[x 7→ u])] ≤ ε =: δ̂3

in this case

In conclusion, we have

max
x,D:
|D|≤k
¬P′(D)

Pr
u←Y

[P′(D[x 7→ u])] ≤ max(δ̂−2, δ1, δ2,0, δ̂1, δ̂2, δ̂3) := δ(k).
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Using Equation (13), and applying Lemma 9.38 to the (Q̃ + τ + 7)-query algorithm B,
where Q̃ = Q0 +Q1 +Q2,0 +Q2,1 +Q2,2 +Q2,3 +Q4, we obtain

Pr
(pk,π)←AH1,H

1
2,...,H

ℓ
2

[pk /∈ L ∧ verifier accepts]

≤


Q̃+2τ+12∑

k=1

√√√√10 max
x,D:
|D|≤k
¬P(D)

Pr
u←Y

[P(D[x 7→ u])]


2

≤

Q̃+2τ+12∑
k=1

√
10δ(k)

2

≤ 10(Q̃+ 2τ + 12)

Q̃+2(ℓ+1)∑
k=1

δ(k)

Here, the third inequality is the Cauchy-Schwarz inequality. Evaluating the maximum for
the FAEST parameters and upper-bounding by a sum when it depends on Q which term
is larger we get δ(k) ≤ (τ + 1)(Q̃+ 2τ + 12)2−2λ + τ · 2−λ

Pr
(pk,π)←AH1,H

1
2,...,H

ℓ
2

[pk /∈ L ∧ verifier accepts]

≤ 10(τ + 1)(Q̃+ 2τ + 12)32−2λ + 10(Q̃+ 2τ + 12)2τ · 2−λ.

For FAEST-EM, the term 10(Q̃+2τ +12)2τ · 2−λ is replaced by the next largest term that
scales with Q2, 30(Q̃+ 2τ + 12)2 · 2−λ.

9.7.4 FAEST EUF-KO ⇐ FAESTelc
r soundness

Lemma 9.40. Let AH0,H1,H0
2,H

1
2,H

2
2,H

3
2,H3,H4 be a QROM EUF-KO adversary against FAEST

that makes a total of Q0, Q1, Q2,0, Q2,1, Q2,2, Q2,3, Q3, Q4 queries to its oracles. Then there

exist a quantum PRG adversary B1 against OWF and a QROM adversary BH0,H1,H0
2,H

1
2,H

2
2,H

3
2,H4

against FAESTelc
r that makes at most a total of Q0+1, Q1+ τ +1, Q2,0+1, Q2,1+1, Q2,2+

1, Q2,3 + 1, Q4 + 1 queries to its oracles such that

AdvEUFKOFAEST
A ≤ 1

1− dom(OWF)
cod(OWF)

·
(
AdvSnd

FAESTelc
r

B + AdvPRGOWF
B1

)
For FAEST-EM, there exists an adversary C against the almost injectivity (Definition 9.13)
of PRG such that the following similar bound holds.

AdvEUFKOFAEST-EM
A ≤ 1

1− dom(OWF)
cod(OWF)

·
(
AdvSnd

FAEST-EMelc
r

B +AdvPRGOWF
B1 +AdvOivInjPRG2λ

C [L]
)
.

Proof. First, define A′H0,H1,H0
2,H

1
2,H

2
2,H

3
2,H4 as identical to A except that it simulates H3

locally. As FAEST.Verify does not call H3, this change is perfectly indistinguishable, so

AdvSndFAESTA = AdvSndFAESTr
A = AdvSndFAESTr

A′ .

Now define a prover B for FAESTelc
r as follows. B(pk) runs (msg, σ) ← A(pk) and then

FAEST.Verify(msg, pk, σ), storing intermediate results of the verification computation as
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needed for the following. For each prover message of the 7-challenge IP, we will now
describe how the data contained in it (and thus in a FAESTelc

r proof) that are not part of
a FAESTr signature are generated. For pmsg−1, use the values hi,j hashed in Line 36 of
BAVC.Reconstruct (as called by VOLEReconstruct, as called by FAEST.Verify) in place of
comi,j . For pmsgi, i = 1, 2, 3, use the hash input of lines 10, 15, and 18 of FAEST.Verify,
respectively. By contsruction, if FAEST.Verify accepts, then the resulting proof is accepted
by FAESTelc

r verification. We have thus shown that

AdvSndFAESTA = AdvSnd
FAESTelc

r
B .

For FAEST-EM, the same argument shows that

AdvSndFAEST-EMA = AdvSnd
˜FAEST-EMelc

r
B ,

where ˜FAEST-EMelc
r is identical to FAEST-EMelc

r except that the verifier does not reject
when one of the comi,j has multiple pre-images. We now construct adversary C against the
almost injectivity game from Definition 9.13 as follows. C runs A while simulating oracles
locally. It then outputs the list of comi.j submitted by A, together with the challenge iv
output by H4 when queried on ivpre. We thus have

AdvSnd
˜FAEST-EMelc

r
B − AdvSnd

FAEST-EMelc
r

B ≤ AdvOivInjPRG2λ
C [L].

The claim then follows by applying Equation (5) proven in the proof of Theorem 9.24,
which holds for any computational model.

9.7.5 Quantum-guess unpredictability of VOLECommit. We start by proving a
slight quantum generalization of Lemma 9.21.

Lemma 9.41 (VOLECommit is quantum-guess unpredictable). Fix some ℓ̂ ∈ N and

admissible param, paramVOLE. Let A be an adversary in the following game ExpUnpred
VOLECommit,ℓ̂,param,paramVOLE
b,A (λ):

1. (L, state)← AH0,H1(1λ), where G is a quantum register with the right number of qubits
to hold a (superposition of) list(s) Lcom of commitment guesses.

2. r ← {0, 1}λ, iv← {0, 1}128
3. C = (com, decom, c1, . . . , cτ−1,u,V)← VOLECommit(r, iv, ℓ̂; param, paramVOLE)

4. Set b′ = 1. If b = 1, apply the binary measurement to L that tests membership of com
in the list Lcom the register L contains (in superposition). If yes (output 1), set b′ = 0.

5. If b′ = 1, set b′ ← AH0,H1(state, L, C).

6. Output b′.

For brevity, let Gb denote ExpQUnpred
VOLECommit,ℓ̂,param,paramVOLE
b,A for b ∈ {0, 1}. Also let

β = λ
128 ∈ N. For any adversary A which makes at most Q1 queries to H1, and outputs

lists L of size at most Qcom we have

Pr[G0 = 1] ≤e(4⌈log(L)⌉β2+16β2)/2128 ·
(
Pr[G1 = 1]

+ ⌈log(L)⌉ · AdvPRPPRG2λ
B [1] + AdvPRPLeafCommit[1]

+
(
3
√

Q1 + 2
√
Qcom

)
· 2−λ +Qcom · 2−2λ

)
where by abuse of notation, we write AdvPRPLeafCommit for AdvPRPPRG4λ in FAEST, and
AdvPRPPRG2λ in FAEST-EM.
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Proof. The proof proceeds identically to the proof of Lemma 9.21, until Equation (4).
Now, define G′′2 where h0 is sampled independently uniformly random. By Proposition 1
in [GHHM21] we have

|Pr[G′2 = 1]− Pr[G′′2 = 1]| ≤ 3

2

√
Q12

−λ

Define G′′′2 where additionally, com is sampled uniformly at random. Similarly we get

|Pr[G′′2 = 1]− Pr[G′′′2 = 1]| ≤ 3

2

√
Q12

−λ

Finally, we need to add the the membership test measurement and analyze the probability
that it returns 1. Define G′3 like G

′′′
2 except that the membership test measurement from step

4. is applied (but the output is not used). Let ε be the probability that the measurement
outputs 1. Then by a gentle measurement lemma we get

|Pr[G′3 = 1]− Pr[G′′′2 = 1]| ≤ 2
√
ε

Finally we observe that the outputs of G′3 and G0 are identical except if the measurement
in Line 4 returns 1. We thus get

|Pr[G0 = 1]− Pr[G′3 = 1]| ≤ ε

To bound ε, let L = L0L1 . . . LQcom−1, where each subregister Li contains a commitment
guess. We observe that for fixed com, the projector corresponding to the 1 outcome of the
measurement in step 4 is

P1,com =

Qcom−1∑
i=0

|com⟩⟨com|Li
⊗ 1Lic

,

where Lic = L0L1 . . . Li−1Li+1 . . . LQcom−1. Taking the expectation over a uniformly ran-
dom com we get

Ecom←{0,1}2λP1,com =
Qcom

22λ
1.

It follows that ε = Qcom

22λ
. Collecting all the terms yields the claimed bound.

9.7.6 FAEST EUF-CMA ⇐ FAEST EUF-KO

Theorem 9.42 (FAEST is EUF-CMA secure). Let H0,H1,H
1
2,H

2
2, H

3
2 and H4 be modeled

as quantum-accessible random oracles and H3 be a PRF. Then for any QPT adversary A
which makes Qsig queries to Osig and Q0, Q1, Q2,1, Q2,2 and Q2,3 queries to H0,H1,H

1
2, H

2
2

and H3
2 respectively,

AdvEUFCMAFAEST
A [Qsig] ≤ 2 · AdvEUFKOFAEST

+ 2 ·Qsig ·
(
AdvPRFH3 + ⌈log(L)⌉ · AdvPRPPRG2λ [1] + AdvPRPLeafCommit[1]

)
+ 2 ·Qsig ·

((
3
√

Q1 + 2
√
Q2,1

)
· 2−λ +Q2,1 · 2−2λ

+
3

2
·
√

Qsig +Q2,2

25λ+64
+

3

2

√
Qsig +Q2,3

23λ+64

)
,

where again AdvPRPLeafCommit for AdvPRPPRG4λ in FAEST, and AdvPRPPRG2λ in FAEST-EM.

Proof. We follow the same sequence of game hops as in the proof of Theorem 9.36, and only
prove bounds for game hops where they differ from the classical ones beyond advantage
terms now being defined with respect to quantum algorithms.
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G3: In G3, the quantum-accessible random oracle is simulated using the compressed oracle
technique [Zha19]. Upon a query to Osig, chall1 ∈ {0, 1}5λ+64 is sampled at random.
When Osig is about to query H1

2 on µ∥com∥c1∥ . . . ∥cτ−1∥iv, a two-outcome measure-
ment is applied to the compressed oracle database to test whether it contains an entry
with this input. If yes, abort, else program H1

2 to output chall1 on this input.

We argue indistinguishability by reduction to unpredictability as stated in Lemma 9.41.
We use a hybrid argument, where G3,i implements measurement and abort only for
the first i queries to Osig. Clearly, G3,0 = G2 and G3,Qsig

= G3. Moreover, G3,i−1 and
G3,i only differ in the i-th Osig query. The i-th reduction Aunpred,i to quantum-list
unpredictability plays unpredictability game in Lemma 9.41 such that it emulates
G3,i, except that for the i-th Osig-query, it outputs its current state and the sub-
registers of all compressed oracle database input registers corresponding to the com-
mitments. It then receives (com, c1, . . . , cτ−1) from the unpredictability experiment
(instead of running VOLECommit), and then continues from there. By construction,

G3,i−1 = 1 ⇐⇒ ExpQUnpred
VOLECommit,ℓ̂,param,paramVOLE
0,Aunpred

= 1 and G3,i = 1 ⇐⇒

ExpQUnpred
VOLECommit,ℓ̂,param,paramVOLE
1,Aunpred,i

. Thus, from Lemma 9.41 and a hybrid argument
we get

Pr[G3 = 1] ≤eQsig·(4⌈log(L)⌉β2+16β2)/2128 ·
(
Pr[G1 = 1]

+Qsig ·
(
⌈log(L)⌉ · AdvPRPPRG2λ

B [1] + AdvPRPLeafCommit[1]

+
(
3
√

Q1 + 2
√

Q2,1

)
· 2−λ +Q2,1 · 2−2λ

)) (14)

G4&G5: For G4 and G5, instead of adding an abort condition, we just reprogram H2
2 repsectively

H3
2 to the randomly sampled values for chall2 and chall3. By the adaptive reprogram-

ming lemma (Proposition 1 in [GHHM21]) we get

Pr[G3 = 1] ≤ Pr[G4 = 1] +
3

2
·Qsig ·

√
Qsig +Q2,2

25λ+64

and

Pr[G4 = 1] ≤ Pr[G5 = 1] +
3

2
Qsig ·

√
Qsig +Q2,3

23λ+64
.

Collecting all the terms, including from the game hops that are unchanged compared to
Theorem 9.36, finishes the proof.

We can now combine the above to get the EUF-CMA security of FAEST in the QROM.

Corollary 9.43 (FAEST is EUF-CMA secure in the QROM). Let H0,H1,H
1
2,H

2
2, H

3
2

and H4 be modeled as quantum-accessible random oracles and H3 be a PRF. Then for any
QPT adversary A which makes Qsig queries to Osig and Q0, Q1, Q2,1, Q2,2 and Q2,3 queries
to H0,H1,H

1
2, H

2
2 and H3

2 respectively,

AdvEUFCMAFAEST
A [Qsig] ≤ 2 · AdvEUFKOFAEST

A

+ 2 ·Qsig ·
(
AdvPRFH3 + ⌈log(L)⌉ · AdvPRPPRG2λ [1] + AdvPRPLeafCommit[1]

)
+ 2 ·Qsig ·

((
3
√

Q1 + 2
√
Q2,1

)
· 2−λ +Q2,1 · 2−2λ

)
+ 3 ·Qsig ·

(√Qsig +Q2,2

25λ+64
+

√
Qsig +Q2,3

23λ+64
.
)
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with

AdvEUFKOFAEST
A ≤ 1

1− dom(OWF)
cod(OWF)

·
(
10 ·Q3 · 2−2λ + 10 ·Q2 · τ · 2−λ + AdvPRGOWF

B1
)
,

for FAEST.

For FAEST-EM, there exists a QROM adversary against the almost injectivity of PRG
such that

AdvEUFKOFAEST-EM
A ≤ 1

1− dom(OWF)
cod(OWF)

·
(
10 ·Q3 · 2−2λ + 10 ·Q2 · 2−λ

+ AdvPRGOWF
B1 + AdvOivInjPRG2λ

C [L]
)
.

Here,

Q = Q0 +Q1 +Q2,0 +Q2,1 +Q2,2 +Q2,3 +Q4 + 3τ + 19.

Remark 9.44. We have chosen to instantiate all random oracles via domain separation to
facilitate the proof of Lemma 9.39 in its relatively simple form. A tighter bound differenti-
ating between the query number of the different random oracles instead of upper-bounding
by the sum can be obtained by proving a straightforward, albeit tedious, generalization
of Lemma 9.38 to multiple distinct quantum-accessible random oracles and applying it to
improve Lemma 9.39.

10 Advantages and Limitations

10.1 Advantages

Minimal security assumptions. FAEST uses only symmetric primitives, with secu-
rity relying on the already standard assumptions about the one-wayness and pseudo-
randomness of AES, and collision-resistance and random oracle-like properties of the SHA3
hash function family. In particular, FAEST does not need any structured or novel assump-
tions, and is fairly straightforward to analyze against concrete attacks.

Good, general-purpose performance. Overall, FAEST has good performance across
public key and signature sizes, signing speed and verification speed. This makes it a
strong candidate for general-purpose use, for instance, in real-time protocols like TLS
as well as more static use-cases like code signing. Compared with hash-based signatures
like SPHINCS+, based on similarly conservative assumptions, FAEST enjoys much faster
signing and smaller signatures.

Small (key+signature) sizes. FAEST has very small keys, with secret keys of size 16–
32 bytes and public keys 32–64 bytes. This makes the combined size of a public key and
signature fairly small, for example, 3938 bytes for FAEST-EM-128s, very close to the 3732
bytes of the lattice-based scheme ML-DSA-44 (Dilithium2). This metric is particularly
important to optimize in applications like certificates.

Modularity. FAEST uses a modular design with several independent building blocks.
The PRGs or hash functions can easily be swapped out with alternatives that may im-
prove performance, or security in case of an unexpected weakness in one of the primitives.
Moreover, using one-way functions other than AES in the zero-knowledge proof system
can lead to different tradeoffs in terms of performance and assumptions.
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Performance trade-offs. FAEST provides a large amount of flexibility in terms of dif-
ferent parameters settings. While this document only specifies two parameter settings for
each security level, further choices are possible that give a larger range of performance
tradeoffs between signature size and signing/verification speed.

Security proof. FAEST has a security proof in the ROM and the QROM, via a reduction
to the security of the underlying primitives. Since both proofs are almost tight, except
for a multiplicative loss in the number of signing queries, this provides strong evidence of
security for FAEST.

10.2 Limitations

Verification speed. Despite the overall good performance, FAEST has slightly slower
verification compared with SPHINCS+, which may make it less desirable in applications
where verification is performed much more often than signing. However, this is less signif-
icant compared with the improvements in both signing time and signature size.

Signature sizes. While FAEST signatures are very small amongst signature schemes
based on symmetric primitives, they are still somewhat larger than lattice-based signature
schemes like Dilithium and FALCON. This may make it less suitable in a setting where
transmitting signatures is the bottleneck in a network.
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A Details on Finite Fields

A.1 Finite Field Generator Elements

Below, we specify the generators of F28 we use when lifting to each of the fields F2128 ,F2192

and F2256 using ByteCombine. We first give the hexadecimal representation in little-endian
order, followed by the human-readable polynomial. The generators were obtained using
SageMath.
F2128 :

{0x0d, 0xce, 0x60, 0x55, 0xac, 0xe8, 0x3f, 0xa1,

0x1c, 0x9a, 0x97, 0xa9, 0x55, 0x85, 0x3d, 0x05}

z122 + z120 + z117 + z116 + z115 + z114 + z112 + z111 + z106 + z104 + z102 + z100+

z98 + z96 + z95 + z93 + z91 + z88 + z87 + z84 + z82 + z81 + z80 + z79 + z76 + z75+

z73 + z68 + z67 + z66 + z63 + z61 + z56 + z53 + z52 + z51 + z50 + z49 + z48 + z47+

z46 + z45 + z43 + z39 + z37 + z35 + z34 + z30 + z28 + z26 + z24 + z22 + z21 + z15+

z14 + z11 + z10 + z9 + z3 + z2 + 1

F2192 :

{0x63, 0x97, 0x38, 0x6f, 0xd5, 0xa3, 0xc8, 0xcc,

0xea, 0xbd, 0x6e, 0x96, 0x6c, 0xd7, 0x65, 0xe6,

0x62, 0x36, 0x6b, 0x0e, 0x14, 0xc8, 0x0b, 0x31}

z189 + z188 + z184 + z179 + z177 + z176 + z175 + z174 + z171 + z164 + z162 + z155+

z154 + z153 + z150 + z149 + z147 + z145 + z144 + z141 + z140 + z138 + z137 + z134+

z133 + z129 + z127 + z126 + z125 + z122 + z121 + z118 + z117 + z114 + z112 + z111+

z110 + z108 + z106 + z105 + z104 + z102 + z101 + z99 + z98 + z95 + z92 + z90 + z89+

z86 + z85 + z83 + z82 + z81 + z79 + z77 + z76 + z75 + z74 + z72 + z71 + z70 + z69+

z67 + z65 + z63 + z62 + z59 + z58 + z55 + z54 + z51 + z47 + z45 + z41 + z40 + z39+

z38 + z36 + z34 + z32 + z30 + z29 + z27 + z26 + z25 + z24 + z21 + z20 + z19 + z15+

z12 + z10 + z9 + z8 + z6 + z5 + z + 1

F2256 :

{0xe7, 0xfe, 0xde, 0x0b, 0x42, 0x88, 0x97, 0x96,

0x67, 0x4e, 0x47, 0xa0, 0x38, 0x8d, 0xd6, 0xbe,

0x6a, 0xe1, 0xf1, 0xf8, 0x45, 0x98, 0x22, 0xdf,

0x33, 0x58, 0xc9, 0x20, 0xcf, 0xa8, 0xc9, 0x04}

z250 + z247 + z246 + z243 + z240 + z239 + z237 + z235 + z231 + z230 + z227 + z226+

z225 + z224 + z221 + z215 + z214 + z211 + z208 + z206 + z204 + z203 + z197 + z196+

z193 + z192 + z191 + z190 + z188 + z187 + z186 + z185 + z184 + z181 + z177 + z175+

z172 + z171 + z166 + z162 + z160 + z159 + z158 + z157 + z156 + z155 + z151 + z150+

z149 + z148 + z144 + z143 + z142 + z141 + z136 + z134 + z133 + z131 + z129 + z127+

z125 + z124 + z123 + z122 + z121 + z119 + z118 + z116 + z114 + z113 + z111 + z107+

z106 + z104 + z101 + z100 + z99 + z95 + z93 + z86 + z82 + z81 + z80 + z78 + z75+

z74 + z73 + z70 + z69 + z66 + z65 + z64 + z63 + z60 + z58 + z57 + z55 + z52 + z50+

z49 + z48 + z47 + z43 + z38 + z33 + z27 + z25 + z24 + z23 + z22 + z20 + z19 + z18+

z17 + z15 + z14 + z13 + z12 + z11 + z10 + z9 + z7 + z6 + z5 + z2 + z + 1
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A.2 Affine Layer of S-box as a Function of the Conjugates

For each choice of λ ∈ {128, 192, 256}, we define the coefficients ζi ∈ F2λ using the F28

embedding element α8 ∈ F2λ , as follows:

ζ0 = α2
8 + 1

ζ1 = α3
8 + 1

ζ2 = α7
8 + α6

8 + α5
8 + α4

8 + α3
8 + 1

ζ3 = α5
8 + α2

8 + 1

ζ4 = α7
8 + α6

8 + α5
8 + α4

8 + α2
8

ζ5 = 1

ζ6 = α7
8 + α5

8 + α4
8 + α2

8 + 1

ζ7 = α7
8 + α3

8 + α2
8 + α8 + 1

ζ8 = α6
8 + α5

8 + α8 + 1

The affine component of the S-box on an input x ∈ F28 , embedded in F2λ , can then be
computed as

∑7
i=0 ζix

2i + ζ8.
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